Affordable Multi-legged Robots for Research and STEM Education: A Case Study of Design and Technological Aspects

  • Dominik Belter
  • Piotr Skrzypczyński
  • Krzysztof Walas
  • Donald Wlodkowic
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 351)

Abstract

As much interest in various aspects of legged locomotion arose in the robotics community over the last decade, many custom design walking robots have been demonstrated. However, they are usually very complicated and expensive. Thus, in this paper we present two families of small-to-medium size legged robots, that share the same basic concepts of using inexpensive, off-the-shelf servos as actuators, and the idea of making the mechanical design technologically simple. Although developed with a similar idea in mind, these robots differ with respect to many design choices and the manufacturing technology. In this paper we try to asses critically those differences, formulating some guidelines for future designs.

Keywords

legged robot hexapod design methodology 3D printing 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bajracharya, M., Ma, J., Malchano, M., Perkins, A., Rizzi, A., Matthies, L.: High fidelity day/night stereo mapping with vegetation and negative obstacle detection for vision-in-the-loop walking. In: Proc. IEEE/RSJ Int. Conf. on Intelligent Robots and Systems, pp. 3663–3670 (2013)Google Scholar
  2. 2.
    Belter, D., Skrzypczyński, P.: Population-based methods for identification and optimization of a walking robot model. In: Kozłowski, K.R. (ed.) Robot Motion and Control 2009. LNCIS, vol. 396, pp. 185–195. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  3. 3.
    Belter, D., Skrzypczyński, P.: A biologically inspired approach to feasible gait learning for a hexapod robot. Int. Journal of Applied Mathematics and Computer Science 20(1), 69–84 (2010)CrossRefMATHGoogle Scholar
  4. 4.
    Belter, D., Skrzypczyński, P.: Precise self-localization of a walking robot on rough terrain using parallel tracking and mapping. Industrial Robot: An International Journal 40(3), 229–237 (2013)CrossRefGoogle Scholar
  5. 5.
    Belter, D., Walas, K.: A Compact Walking Robot – Flexible Research and Development Platform. In: Szewczyk, R., Zieliński, C., Kaliczyńska, M. (eds.) Recent Advances in Automation, Robotics and Measuring Techniques. AISC, vol. 267, pp. 343–352. Springer, Heidelberg (2014)CrossRefGoogle Scholar
  6. 6.
    Gibson, I., Rosen, D., Stucker, B.: Additive manufacturing technologies: rapid prototyping to direct digital manufacturing. Springer, Berlin (2009)Google Scholar
  7. 7.
    Hutter, M., Gehring, C., Bloesch, M., Hoepflinger, M., Remy, C., Siegwart, R.: StarlETH: a compliant quadrupedal robot for fast, efficient and versatile locomotion. In: Adaptive Mobile Robotics, pp. 483–490. World Scientific, Singapore (2012)CrossRefGoogle Scholar
  8. 8.
    Lohmann, S., Yosinski, J., Gold, R., Clune, J., Blum, J., Lipson, H.: Aracna: An open-source quadruped platform for evolutionary robotics. In: Proc. 13th Int. Conf. on the Synthesis and Simulation of Living Systems (2012)Google Scholar
  9. 9.
    Rönnau, A., Heppner, G., Nowicki, M., Dillmann, R.: LAURON V: A versatile six-legged walking robot with advanced maneuverability. In: IEEE/ASME Int. Conf. on Advanced Intelligent Mechatronics (AIM), pp. 82–87 (2014)Google Scholar
  10. 10.
    Robotis Bioloid (2014), http://www.robotis.com/xe/bioloid_en
  11. 11.
    Saranli, U., Buehler, M., Koditschek, D.: RHex: a simple and highly mobile hexapod robot. Int. Journal of Robotics Research 20(7), 616–631 (2001)CrossRefGoogle Scholar
  12. 12.
    Shkolnik, A., Levashov, M., Manchester, I., Tedrake, R.: Bounding on rough terrain with the LittleDog robot. Int. Journal of Robotics Research 30(2), 192–215 (2011)CrossRefGoogle Scholar
  13. 13.
    Walas, K., Belter, D., Kasiński, A.: Control and environment sensing system for a six-legged robot. Journal of Automation, Mobile Robotics & Intelligent Systems 2(3), 26–31 (2008)Google Scholar
  14. 14.
    Walas, K., Belter, D.: Messor – versatile walking robot for search and rescue missions. Journal of Automation, Mobile Robotics & Intelligent Systems 5(2), 28–34 (2011)MathSciNetGoogle Scholar
  15. 15.
    Walas, K., Belter, D.: Supporting locomotive functions of a six-legged walking robot. Int. Journal of Applied Mathematics and Computer Science 21(2), 363–377 (2011)CrossRefMATHMathSciNetGoogle Scholar
  16. 16.
    Wooden, D., Malchano, M., Blankespoor, K., Howardy, A., Rizzi, A., Raibert, M.: Autonomous navigation for BigDog. In: Proc. IEEE Int. Conf. on Robotics and Automation, pp. 4736–4741 (2010)Google Scholar
  17. 17.
    Zhu, F., Macdonald, N.P., Cooper, J.M., Wlodkowic, D.: Additive manufacturing of lab-on-a-chip devices: promises and challenges. In: Proc. SPIE, vol. 8923, Micro/Nano Materials, Devices, and Systems (2013)Google Scholar
  18. 18.
    Zielińska, T.: Maszyny kroczące. Podstawy, projektowanie, sterowanie i wzorce biologiczne. PWN, Warsaw (2003)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Dominik Belter
    • 1
  • Piotr Skrzypczyński
    • 1
  • Krzysztof Walas
    • 1
  • Donald Wlodkowic
    • 2
    • 3
  1. 1.Institute of Control and Information EngineeringPoznań University of TechnologyPoznańPoland
  2. 2.School of Applied SciencesRMIT UniversityBundooraAustralia
  3. 3.Faculty of Machines and TransportationPoznań University of TechnologyPoznańPoland

Personalised recommendations