Gait Trajectory Planing for CIE Exoskeleton

  • Rafał KabacińskiEmail author
  • Piotr Kaczmarek
  • Mateusz Kowalski
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 351)


In this paper construction of CIE Exoskeleton is presented. CIE Exoskeleton is equipped with four actuated joints in hips and knees, which is minimal set of actuators to enable paraplegic operators to walk in exoskeleton with use of crutches. Moreover, we proposed a novel statically stable gait pattern which can be used by paraplegic subjects to restore locomotion even the exoskeleton ankle joint is not actuated. Proposed gait trajectory enables to shift center of pressure form a rear leg to a forward leg without leaving a stable pose. Furthermore the preliminary results of tests on planar gait trajectory planing accuracy were presented. Preliminary tests on accuracy of planar gait trajectory planing indicate that a step length cannot be estimated only from planar model due to pelvis or exoskeleton rotation during walking. It was shown that this effect can be partially compensated by using a linear correction function.


Exoskeleton gait trajectory planing paraplegia 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Banala, S., Kim, S.H., Agrawal, S., Scholz, J.: Robot assisted gait training with active leg exoskeleton (alex). IEEE Transactions on Neural Systems and Rehabilitation Engineering 17(1), 2–8 (2009)CrossRefGoogle Scholar
  2. 2.
    Colombo, G., Joerg, M., Schreier, R., Dietz, V.: Treadmill training of paraplegic patients using a robotic orthosis. Journal of Rehabilitation Research and Development 37(6), 693–700 (2000)Google Scholar
  3. 3.
    Eng, J.J., Winter, D.A.: Kinetic analysis of the lower limbs during walking: what information can be gained from a three-dimensional model? Journal of Biomechanics 28, 753–758 (1995)CrossRefGoogle Scholar
  4. 4.
    Gedliczka, A.: Atlas miar człowieka. Centralny Instytut Ochrony Pracy (2001)Google Scholar
  5. 5.
    Husemann, B., Muller, F., Krewer, C., Heller, S., Koenig, E.: Effects of Locomotion Training With Assistance of a Robot-Driven Gait Orthosis in Hemiparetic Patients After Stroke: A Randomized Controlled Pilot Study. Stroke 38, 349–354 (2007)CrossRefGoogle Scholar
  6. 6.
    Kirtley, C.: CGA Normative Gait Database. Hong Kong Polytechnic University (1998),
  7. 7.
    Linskell, J.: CGA Normative Gait Database. Hong Kong Polytechnic University (1997),
  8. 8.
    Morecki, A., Ekiel, J., Fidelus, K.: Bionika Ruchu. Państwowe Wydawnictwo Naukowe (1971)Google Scholar
  9. 9.
    Nowak, E.: Atlas antropometryczny populacji polskiej - dane do projektowania. Instytut Wzornictwa Przemysłowego (2000)Google Scholar
  10. 10.
    Pons, J.: Wearable Robots: Biomechatronic Exoskeletons. Wiley (2008)Google Scholar
  11. 11.
    Quintero, H., Farris, R., Goldfarb, M.: Control and implementation of a powered lower limb orthosis to aid walking in paraplegic individuals. In: 2011 IEEE International Conference on Rehabilitation Robotics (ICORR), pp. 1–6 (June 2011)Google Scholar
  12. 12.
    Riener, R., Lunenburger, L., Jezernik, S., Anderschitz, M., Colombo, G., Dietz, V.: Patient-cooperative strategies for robot-aided treadmill training: first experimental results. IEEE Transactions on Neural Systems and Rehabilitation Engineering 13(3), 380–394 (2005)CrossRefGoogle Scholar
  13. 13.
    Strausser, K.A., Kazerooni, H.: The development and testing of a human machine interface for a mobile medical exoskeleton. In: 2011 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 4911–4916 (September 2011)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Rafał Kabaciński
    • 1
    Email author
  • Piotr Kaczmarek
    • 1
  • Mateusz Kowalski
    • 1
  1. 1.Institute of Control and Information EngineeringPoznan University of TechnologyPoznańPoland

Personalised recommendations