Advertisement

Identification and Classification of Objects and Motions in Microscopy Images of Biological Samples Using Heuristic Algorithms

  • Stephan M. Winkler
  • Susanne Schaller
  • Daniela Borgmann
  • Lisa Obritzberger
  • Viktoria Dorfer
  • Christian Haider
  • Sandra Mayr
  • Peter Lanzerstorfer
  • Claudia Loimayr
  • Simone Hennerbichler-Lugscheider
  • Andrea Lindenmair
  • Heinz Redl
  • Michael Affenzeller
  • Julian Weghuber
  • Jaroslaw Jacak
Chapter
Part of the Studies in Computational Intelligence book series (SCI, volume 595)

Abstract

Heuristic algorithms are used for solving numerous modern research questions in biomedical informatics. We here summarize ongoing research done in this context and focus on approaches used in the analysis of microscopic images of biological samples. On the one hand we discuss the use of evolutionary algorithms for detecting and classifying structures in microscopy images, especially micro-patterns, cornea cells, and strands of myocardial muscles. On the other hand we show the use of data mining for characterizing the motions of molecules (for recognizing cells affected by paroxysmal nocturnal hemoglobinuria) and the progress of bone development.

Keywords

Random Forest Single Molecule Solution Candidate Amniotic Membrane Paroxysmal Nocturnal Hemoglobinuria 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

The authors cordially thank their research partners at Red Cross Blood Transfusion Service of Upper Austria, Olympus Austria, Trauma Care Consult, and at the Research Centers Hagenberg, Wels, and Linz of the University of Applied Sciences Upper Austria for their ongoing support. The work described in this paper was done within the research projects MicroProt (sponsored by the University of Applied Sciences Upper Austria within its basic research programme) and NanoDetect (sponsored by the Austrian Research Promotion Agency within the FIT-IT programme).

References

  1. 1.
    Affenzeller, M., Winkler, S., Wagner, S., Beham, A.: Genetic Algorithms and Genetic Programming—Modern Concepts and Practical Applications. Chapman & Hall/CRC (2009)Google Scholar
  2. 2.
    Bernardo, B.C., Weeks, K.L., Pretorius, L., McMullen, J.R.: Molecular distinction between physiological and pathological cardiac hypertrophy: experimental findings and therapeutic strategies. Pharmacol. Ther. 128(1), 191–227 (2010)CrossRefGoogle Scholar
  3. 3.
    Binnig, G., Quate, C.F.: Atomic force microscope. Phys. Rev. Lett. 56(9), 930–933 (1986)CrossRefGoogle Scholar
  4. 4.
    Borgmann, D., Weghuber, J., Schaller, S., Jacak, J., Winkler, S.M.: Identification of patterns in microscopy images of biological samples using evolution strategies. In: Proceedings of the 24th European Modeling and Simulation Symposium EMSS 2012, pp. 271–276 (2012)Google Scholar
  5. 5.
    Breiman, L.: Random forests. Mach. Learn. 45(1), 5–32 (2001)CrossRefzbMATHGoogle Scholar
  6. 6.
    Dichtl, M., Gabriel, C., Hennerbichler, S., Seitz, B., Priglinger, S.: EU conformable eyebanking—a survey: Eyebank linz. Spektrum der Augenheilkunde 24, 166–173 (2010)CrossRefGoogle Scholar
  7. 7.
    Haykin, S.: Neural Networks. A Comprehensive Foundation, 2nd edn. Prentice-Hall, Upper Saddle River NJ (1999)zbMATHGoogle Scholar
  8. 8.
    Kampik, A., Grehn, F.: Augenärztliche Therapie. Georg Thieme Verlag, Stuttgart (2002)Google Scholar
  9. 9.
    Langdon, W.B., Poli, R.: Foundations of Genetic Programming. Springer, Berlin (2002)CrossRefzbMATHGoogle Scholar
  10. 10.
    Lanzerstorfer, P., Borgmann, D., Schütz, G., Winkler, S. M., Höglinger, O., Weghuber, J.: Quantification and kinetic analysis of Grb2-EGFR interaction on micro-patterned surfaces for the characterization of EGFR-modulating substances. PLoS One 9(3) (2014)Google Scholar
  11. 11.
    Lin, W., Dong, L.: Adaptive downsampling to improve image compression at low bit rates. IEEE Trans. Image Process. 15, 2513–2521 (2006)CrossRefGoogle Scholar
  12. 12.
    Lindenmair, A., Wolbank, S., Stadler, G., Meinl, A., Peterbauer-Scherb, A., Eibl, J., Polin, H., Gabriel, C., van Griensven, M., Redl, H.: Osteogenic differentiation of intact human amniotic membrane. Biomaterials 31(33), 8659–8665 (2010)CrossRefGoogle Scholar
  13. 13.
    Muresan, L., Jacak, J., Klement, E., Hesse, J., Schütz, G.J.: Microarray analysis at single molecule resolution. IEEE Trans. Nanotechnol. 9, 51–58 (2010)Google Scholar
  14. 14.
    Obritzberger, L., Schaller, S., Dorfer, V., Loimayr, C., Hennerbichler, S., Winkler, S.: Identification of endothelial cell morphology in cornea using evolution strategies. In: Proceedings of the European Modeling & Simulation Symposium (2014)Google Scholar
  15. 15.
    Olivo-Marin, J.C.: Extraction of spots in biological images using multiscale products. Pattern Recognit. 35, 1989–1996 (2002)CrossRefzbMATHGoogle Scholar
  16. 16.
    Poli, R., Langdon, W.B., McPhee, N.F.: A Field Guide to Genetic Programming. Lulu.com, (2008)Google Scholar
  17. 17.
    Rechenberg, I.: Evolutionsstrategie. Friedrich Frommann Verlag (1973)Google Scholar
  18. 18.
    Rodgers, J.L., Nicewander, W.A.: Thirteen ways to look at the correlation coefficient. Am. Stat. 42, 59–66 (1988)CrossRefGoogle Scholar
  19. 19.
    Rosse, W.F.: Paroxysmal nocturnal hemoglobinuria. Curr. Top. Microbiol. Immunol. 178, 163–173 (1992)Google Scholar
  20. 20.
    Schaller, S., Jacak, J., Gschwandtner, D., Bettelheim, P., Winkler, S.M.: Identification of PNH affected cells by classifying motion characteristics of single molecules. Proceedings of the International Workshop on Innovative Simulation for Health Care IWISH 2013, pp. 52–57 (2013)Google Scholar
  21. 21.
    Schwarzenbacher, M., Kaltenbrunner, M., Hesch, M.B.C., Paster, W., Weghuber, J., Heise, B., Sonnleitner, A., Stockinger, H., Schütz, G.: Micropatterning for quantitative analyses of protein-protein interactions in living cells. Nat. Methods 5, 1053–1060 (2008)CrossRefGoogle Scholar
  22. 22.
    Schwefel, H.-P.: Numerische Optimierung von Computer-Modellen mittels der Evolutions strategie. Birkhäuser, Basel, Switzerland (1994)Google Scholar
  23. 23.
    Vapnik, V.: Statistical Learning Theory. Wiley, New York (1998)zbMATHGoogle Scholar
  24. 24.
    Wagner, S., Kronberger, G., Beham, A., Kommenda, M., Scheibenpflug, A., Pitzer, E., Vonolfen, S., Kofler, M., Winkler, S. M., Dorfer, V., Affenzeller, M.: Advanced Methods and Applications in Computational Intelligence. Chapter Architecture and Design of the HeuristicLab Optimization Environment. Topics in Intelligent Engineering and Informatics. pp. 197–261. Springer (2014)Google Scholar
  25. 25.
    Weghuber, J., Brameshuber, M., Sunzenauer, S., Lehner, M., Paar, C., Haselgrübler, T., Schwarzenbacher, M., Kaltenbrunner, M., Hesch, C., Paster, W., Heise, B., Sonnleitner, A., Stockinger, H., Schütz, G.J.: Methods Enzymol. 472, 133–151 (2010)CrossRefGoogle Scholar
  26. 26.
    Wieser, S., Schütz, G.J.: Tracking single molecules in the live cell plasma membrane—do’s and don’t’s. Methods 46, 131–140 (2008)CrossRefGoogle Scholar
  27. 27.
    Winkler,S. M.: Evolutionary System Identification: Modern Concepts and Practical Applications. Schriften der Johannes Kepler Universitt Linz. Universittsverlag Rudolf Trauner (2009)Google Scholar
  28. 28.
    Winkler, S. M. Schaller, S., Borgmann, D., Obritzberger, L., Dorfer, V., Affenzeller, M., Jacak, J., Weghuber, J.: Identification and classification of objects and motions in microscopy images of biological samples using heuristic algorithms. In: Proceedings of the 2nd Asia-Pacific Conference on Computer-Aided System Engineering, APCASE 2014, South Kuta, Indonesia, 10th–12th February, pp. 89–90 (2014). ISBN 978-0-9924518-0-6Google Scholar
  29. 29.
    Wolbank, S., Hildner, F., Redl, H., van Griensven, M., Gabriel, C., Hennerbichler, S.: Impact of human amniotic membrane preparation on release of angiogenic factors. J. Tissue Eng. Regen. Med. 3(8), 651–654 (2009)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Stephan M. Winkler
    • 1
  • Susanne Schaller
    • 1
  • Daniela Borgmann
    • 1
  • Lisa Obritzberger
    • 1
  • Viktoria Dorfer
    • 1
  • Christian Haider
    • 1
  • Sandra Mayr
    • 2
  • Peter Lanzerstorfer
    • 6
  • Claudia Loimayr
    • 3
  • Simone Hennerbichler-Lugscheider
    • 3
  • Andrea Lindenmair
    • 4
  • Heinz Redl
    • 5
  • Michael Affenzeller
    • 1
  • Julian Weghuber
    • 6
  • Jaroslaw Jacak
    • 2
  1. 1.Bioinformatics Research Group and Heuristic and Evolutionary Algorithms LaboratoryUniversity of Applied Sciences Upper AustriaHagenbergAustria
  2. 2.Department of Medical EngineeringUniversity of Applied Sciences Upper AustriaLinzAustria
  3. 3.Red Cross Blood Transfusion Service for Upper AustriaAustrian Cluster for Tissue RegenerationLinzAustria
  4. 4.Ludwig Boltzmann Institute for Experimental and Clinical TraumatologyWienAustria
  5. 5.Trauma Care ConsultWienAustria
  6. 6.Department of Food Technology and NutritionUniversity of Applied Sciences Upper AustriaWelsAustria

Personalised recommendations