Automatic Evaluation of Area-Related Immunogold Particles Density in Transmission Electron Micrographs

  • Bartłomiej Płaczek
  • Rafał J. Bułdak
  • Andrzej Brenk
  • Renata Polaniak
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9012)


Immunogold particles are used in electron microscopy to determine sub-cellular location of biological relevant macromolecules, such as proteins, lipids, carbohydrates, and nucleic acids. In this paper an algorithm is proposed which enables automatic evaluation of the immunogold particles density in transmission electron micrographs. The introduced algorithm combines two different feature localization approaches. Coarse locations of the immunogold particles are recognized by image convolution with a Gaussian prototype and a multi-scale filtering is used to refine the locations. This algorithm was evaluated by using micrographs of human colorectal carcinoma cells. A higher accuracy of the immunogold particles detection was achieved in comparison with a state-of-the-art method. The improved detection accuracy enables a more precise evaluation of the area-related immunogold particles density.


Image processing Immunogold labeling Electron microscopy 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Brandt, S., Heikkonen, J., Engelhardt, P.: Multiphase method for automatic alignment of transmission electron microscope images using markers. Journal of structural biology 133(1), 10–22 (2001)CrossRefGoogle Scholar
  2. 2.
    Bułdak, R.J., Skonieczna, M., Matysiak, N., Wyrobiec, G., Kukla, M., Michalski, M., Żwirska-Korczala, K.: Changes in subcellular localization of visfatin in human colorectal HCT-116 carcinoma cell line after cytochalasin B treatment. European Journal of Histochemistry 58(3), 239–246 (2014)Google Scholar
  3. 3.
    Kołodziejczyk, A., Ładniak, M., Piórkowski, A.: Constructing software for analysis of neuron, glial and endothelial cell numbers and density in histological NISSL-stained rodent brain tissue. Journal of Medical Informatics Technologies 23, 77–86 (2014)Google Scholar
  4. 4.
    Kudłacik, P., Porwik, P.: A new approach to signature recognition using the fuzzy method. Pattern Analysis and Applications 17(3), 451–463 (2014)CrossRefMathSciNetGoogle Scholar
  5. 5.
    Lebonvallet, S., Mennesson, T., Bonnet, N., Girod, S., Plotkowski, C., Hinnrasky, J., Puchelle, E.: Semi-automatic quantitation of dense markers in cytochemistry. Histochemistry 96(3), 245–250 (1991)CrossRefGoogle Scholar
  6. 6.
    Lowe, D.G.: Distinctive image features from scale-invariant keypoints. International journal of computer vision 60(2), 91–110 (2004)CrossRefGoogle Scholar
  7. 7.
    Monteiro-Leal, L.H., Troster, H., Campanati, L., Spring, H., Trendelenburg, M.F.: Gold finder: a computer method for fast automatic double gold labeling detection, counting, and color overlay in electron microscopic images. Journal of Structural Biology 141, 228–239 (2003)CrossRefGoogle Scholar
  8. 8.
    Nejatbakhsh, R., Kabir-Salmani, M., Dimitriadis, E., et al.: Subcellular localization of L-selectin ligand in the endometrium implies a novel function for pinopodes in endometrial receptivity. Reprod Biol Endocrinol 10, 46 (2012)CrossRefGoogle Scholar
  9. 9.
    Płaczek, B., Bułdak, R.J., Polaniak, R., Matysiak, N., Mielanczyk, Ł., Wojnicz, R.: Detection of immunogold markers in images obtained from transmission electron microscopy. Journal of Medical Informatics Technologies 23, 111–118 (2014)Google Scholar
  10. 10.
    Płaczek, B.: A real time vehicle detection algorithm for vision-based sensors. In: Bolc, L., Tadeusiewicz, R., Chmielewski, L.J., Wojciechowski, K. (eds.) ICCVG 2010, Part II. LNCS, vol. 6375, pp. 211–218. Springer, Heidelberg (2010) CrossRefGoogle Scholar
  11. 11.
    Porwik, P., Sosnowski, M., Wesolowski, T., Wrobel, K.: A computational assessment of a blood vessel’s compliance: a procedure based on computed tomography coronary angiography. In: Corchado, E., Kurzyński, M., Woźniak, M. (eds.) HAIS 2011, Part I. LNCS, vol. 6678, pp. 428–435. Springer, Heidelberg (2011) CrossRefGoogle Scholar
  12. 12.
    Saluja, R., Jyoti, A., Chatterjee, M., Habib, S., et al.: Molecular and biochemical characterization of nitric oxide synthase isoforms and their intracellular distribution in human peripheral blood mononuclear cells. Biochimica et Biophysica Acta (BBA)-Molecular Cell Research 1813(10), 1700–1707 (2011)CrossRefGoogle Scholar
  13. 13.
    Shimizu, Y., Kabir-Salmani, M., Azadbakht, M., Sugihara, K., Sakai, K., Iwashita, M.: Expression and localization of galectin-9 in the human uterodome. Endocrine journal 55(5), 879–887 (2008)CrossRefGoogle Scholar
  14. 14.
    Starink, J.P., Humbel, B.M., Verkleij, A.J.: Three-dimensional localization of immunogold markers using two tilted electron microscope recordings. Biophysical journal 68(5), 2171–2180 (1995)CrossRefGoogle Scholar
  15. 15.
    Wang, R., Pokhariya, H., McKenna, S.J., Lucocq, J.: Recognition of immunogold markers in electron micrographs. Journal of structural biology 176(2), 151–158 (2011)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Bartłomiej Płaczek
    • 1
  • Rafał J. Bułdak
    • 2
    • 3
  • Andrzej Brenk
    • 4
  • Renata Polaniak
    • 3
  1. 1.Institute of Computer ScienceUniversity of SilesiaSosnowiecPoland
  2. 2.Department of Physiology, Faculty of Medicine with the Division of DentistrySilesian Medical UniversityZabrzePoland
  3. 3.Departament of Human Nutrition, Faculty of Public HealthSilesian Medical UniversityZabrzePoland
  4. 4.Department of Genaral Biochemystry, Faculty of Medicine with the Division of DentistrySilesian Medical UniversityZabrzePoland

Personalised recommendations