Advertisement

Static Classifier Selection with Interval Weights of Base Classifiers

  • Robert BurdukEmail author
  • Krzysztof Walkowiak
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9011)

Abstract

The selection of classifiers is one of the important problems in the creation of an ensemble of classifiers. The paper presents the static selection in which a new method of calculating the weights of individual classifiers is used. The obtained weights can be interpreted in the context of the interval logic. It means that the particular weights will not be provided precisely but their lower and upper values will be used. A number of experiments have been carried out on several data sets from the UCI repository.

Keywords

Classifier fusion Interval logic Static classifiers selection Multiple classifier system 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgments

This work was supported by the Polish National Science Center under the grant no. DEC-2013/09/B/ST6/02264 and by the statutory funds of the Department of Systems and Computer Networks, Wroclaw University of Technology.

References

  1. 1.
    Bishop, C.M.: Pattern Recognition and Machine Learning (Information Science and Statistics). Springer-Verlag New York Inc., Secaucus (2006)Google Scholar
  2. 2.
    Cavalin, P.R., Sabourin, R., Suen, C.Y.: Dynamic selection approaches for multiple classifier systems. Neural Computing and Applications 22(3–4), 673–688 (2013)CrossRefGoogle Scholar
  3. 3.
    Cyganek, B.: One-class support vector ensembles for image segmentation and classification. Journal of Mathematical Imaging and Vision 42(2–3), 103–117 (2012)CrossRefzbMATHMathSciNetGoogle Scholar
  4. 4.
    Didaci, L., Giacinto, G., Roli, F., Marcialis, G.L.: A study on the performances of dynamic classifier selection based on local accuracy estimation. Pattern Recognition 38, 2188–2191 (2005)CrossRefzbMATHGoogle Scholar
  5. 5.
    dos Santos, E.M., Sabourin, R.: Classifier ensembles optimization guided by population oracle. In: IEEE Congress on Evolutionary Computation, pp. 693–698 (2011)Google Scholar
  6. 6.
    Duin, R., Juszczak, P., Paclik, P., Pekalska, E., de Ridder, D., Tax, D., Verzakov, S.: PR-Tools4.1, A Matlab Toolbox for Pattern Recognition. Delft University of Technology (2007)Google Scholar
  7. 7.
    Frank, A., Asuncion, A.: UCI machine learning repository (2010)Google Scholar
  8. 8.
    Giacinto, G., Roli, F.: An approach to the automatic design of multiple classifier systems. Pattern Recognition Letters 22, 25–33 (2001)CrossRefzbMATHGoogle Scholar
  9. 9.
    Guyon, I., Elisseeff, A.: An introduction to variable and feature selection. The Journal of Machine Learning Research 3, 1157–1182 (2003)zbMATHGoogle Scholar
  10. 10.
    Highleyman, W.H.: The design and analysis of pattern recognition experiments. Bell System Technical Journal 41, 723–744 (1962)CrossRefGoogle Scholar
  11. 11.
    Ho, T.K., Hull, J.J., Srihari, S.N.: Decision combination in multiple classifier systems. IEEE Trans. Pattern Anal. Mach. Intell. 16(1), 66–75 (1994)CrossRefGoogle Scholar
  12. 12.
    Jackowski, K., Krawczyk, B., Woźniak, M.: Improved adaptive splitting and selection: The hybrid training method of a classifier based on a feature space partitioning. International Journal of Neural Systems 24(03) (2014)Google Scholar
  13. 13.
    Jackowski, K., Woźniak, M.: Method of classifier selection using the genetic approach. Expert Systems 27(2), 114–128 (2010)CrossRefGoogle Scholar
  14. 14.
    Kittler, J., Alkoot, F.M.: Sum versus vote fusion in multiple classifier systems. IEEE Trans. Pattern Anal. Mach. Intell. 25(1), 110–115 (2003)CrossRefGoogle Scholar
  15. 15.
    Kuncheva, L.I.: A theoretical study on six classifier fusion strategies. IEEE Trans. Pattern Anal. Mach. Intell. 24(2), 281–286 (2002)CrossRefGoogle Scholar
  16. 16.
    Kuncheva, L.I.: Combining Pattern Classifiers: Methods and Algorithms. John Wiley and Sons Inc. (2004)Google Scholar
  17. 17.
    Lam, L., Suen, C.Y.: Application of majority voting to pattern recognition: an analysis of its behavior and performance. IEEE Transactions on Systems, Man, and Cybernetics, Part A 27(5), 553–568 (1997)CrossRefGoogle Scholar
  18. 18.
    Przewoźniczek, M., Walkowiak, K., Woźniak, M.: Optimizing distributed computing systems for k-nearest neighbours classifiersevolutionary approach. Logic Journal of IGPL 19(2), 357–372 (2010)CrossRefGoogle Scholar
  19. 19.
    Ranawana, R., Palade, V.: Multi-classifier systems: Review and a roadmap for developers. International Journal of Hybrid Intelligent Systems 3(1), 35–61 (2006)zbMATHGoogle Scholar
  20. 20.
    Rejer, I.: Genetic algorithms in EEG feature selection for the classification of movements of the left and right hand. In: Burduk, R., Jackowski, K., Kurzynski, M., Wozniak, M., Zolnierek, A. (eds.) CORES 2013. AISC, vol. 226, pp. 579–589. Springer, Heidelberg (2013) CrossRefGoogle Scholar
  21. 21.
    Ruta, D., Gabrys, B.: Classifier selection for majority voting. Information Fusion 6(1), 63–81 (2005)CrossRefGoogle Scholar
  22. 22.
    Smȩtek, M., Trawiński, B.: Selection of heterogeneous fuzzy model ensembles using self-adaptive genetic algorithms. New Generation Comput. 29(3), 309–327 (2011)CrossRefGoogle Scholar
  23. 23.
    Suen, C.Y., Legault, R., Nadal, C.P., Cheriet, M., Lam, L.: Building a new generation of handwriting recognition systems. Pattern Recognition Letters 14(4), 303–315 (1993)CrossRefGoogle Scholar
  24. 24.
    Trawiński, K., Cordon, O., Quirin, A.: A study on the use of multiobjective genetic algorithms for classifier selection in furia-based fuzzy multiclassifiers. International Journal of Computational Intelligence Systems 5(2), 231–253 (2012)CrossRefGoogle Scholar
  25. 25.
    Ulas, A., Semerci, M., Yildiz, O.T., Alpaydin, E.: Incremental construction of classifier and discriminant ensembles. Information Science 179(9), 1298–1318 (2009)CrossRefGoogle Scholar
  26. 26.
    Woloszyński, T., Kurzyński, M.: A probabilistic model of classifier competence for dynamic ensemble selection. Pattern Recognition 44(10–11), 2656–2668 (2011)CrossRefzbMATHGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  1. 1.Department of Systems and Computer NetworksWroclaw University of TechnologyWroclawPoland

Personalised recommendations