A Method for Merging Similar Zones to Improve Intelligent Models for Real Estate Appraisal

  • Tadeusz Lasota
  • Edward Sawiłow
  • Bogdan Trawiński
  • Marta Roman
  • Paulina Marczuk
  • Patryk Popowicz
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9011)


A method for property valuation based on the concept of merging different areas of the city into uniform zones reflecting the characteristics of the real estate market was worked out. The foundations of the method were verified by experimental testing the accuracy of the models devised for the prediction of real estate prices built over the merged zones. The experiments were conducted using real-world data of sales transactions of residential premises completed in a Polish urban municipality. Two machine learning techniques implemented in the WEKA environment were employed to generate property valuation models. The comparative analysis of the methods was made with the nonparametric Friedman and Wilcoxon statistical tests. The study proved the usefulness of merging of similar areas which resulted in better reliability and accuracy of predicted prices.


Real estate appraisal Predictive models Machine learning Linear regression Decision trees 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Kontrimas, V., Verikas, A.: The mass appraisal of the real estate by computational intelligence. Applied Soft Computing 11(1), 443–448 (2011)CrossRefGoogle Scholar
  2. 2.
    Zurada, J., Levitan, A.S., Guan, J.: A Comparison of Regression and Artificial Intelligence Methods in a Mass Appraisal Context. Journal of Real Estate Res. 33(3), 349–388 (2011)Google Scholar
  3. 3.
    Peterson, S., Flangan, A.B.: Neural Network Hedonic Pricing Models in Mass Real Estate Appraisal. Journal of Real Estate Research 31(2), 147–164 (2009)Google Scholar
  4. 4.
    Narula, S.C., Wellington, J.F., Lewis, S.A.: Valuating residential real estate using parametric programming. European Journal of Operational Research 217, 120–128 (2012)CrossRefzbMATHGoogle Scholar
  5. 5.
    Antipov, E.A., Pokryshevskaya, E.B.: Mass appraisal of residential apartments: An application of Random forest for valuation and a CART-based approach for model diagnostics. Expert Systems with Applications 39, 1772–1778 (2012)CrossRefGoogle Scholar
  6. 6.
    D’Amato, M.: Comparing Rough Set Theory with Multiple Regression Analysis as Automated Valuation Methodologies. Int. Real Estate Review 10(2), 42–65 (2007)Google Scholar
  7. 7.
    Kusan, H., Aytekin, O., Özdemir, I.: The use of fuzzy logic in predicting house selling price. Expert Systems with Applications 37(3), 1808–1813 (2010)CrossRefGoogle Scholar
  8. 8.
    Musa, A.G., Daramola, O., Owoloko, A., Olugbara, O.: A Neural-CBR System for Real Property Valuation. Journal of Emerging Trends in Computing and Information Sciences 4(8), 611–622 (2013)Google Scholar
  9. 9.
    Król, D., Lasota, T., Nalepa, W., Trawiński, B.: Fuzzy system model to assist with real estate appraisals. In: Okuno, H.G., Ali, M. (eds.) IEA/AIE 2007. LNCS (LNAI), vol. 4570, pp. 260–269. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  10. 10.
    Król, D., Lasota, T., Trawiński, B., Trawiński, K.: Comparison of Mamdani and TSK fuzzy models for real estate appraisal. In: Apolloni, B., Howlett, R.J., Jain, L. (eds.) KES 2007, Part III. LNCS (LNAI), vol. 4694, pp. 1008–1015. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  11. 11.
    Lasota, T., Telec, Z., Trawiński, B., Trawiński, K.: Exploration of bagging ensembles comprising genetic fuzzy models to assist with real estate appraisals. In: Corchado, E., Yin, H. (eds.) IDEAL 2009. LNCS, vol. 5788, pp. 554–561. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  12. 12.
    Lasota, T., Telec, Z., Trawiński, B., Trawiński, K.: A multi-agent system to assist with real estate appraisals using bagging ensembles. In: Nguyen, N.T., Kowalczyk, R., Chen, S.-M. (eds.) ICCCI 2009. LNCS, vol. 5796, pp. 813–824. Springer, Heidelberg (2009)Google Scholar
  13. 13.
    Krzystanek, M., Lasota, T., Telec, Z., Trawiński, B.: Analysis of bagging ensembles of fuzzy models for premises valuation. In: Nguyen, N.T., Le, M.T., Świątek, J. (eds.) Intelligent Information and Database Systems. LNCS, vol. 5991, pp. 330–339. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  14. 14.
    Kempa, O., Lasota, T., Telec, Z., Trawiński, B.: Investigation of bagging ensembles of genetic neural networks and fuzzy systems for real estate appraisal. In: Nguyen, N.T., Kim, C.-G., Janiak, A. (eds.) ACIIDS 2011, Part II. LNCS, vol. 6592, pp. 323–332. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  15. 15.
    Lasota, T., Telec, Z., Trawiński, G., Trawiński, B.: Empirical comparison of resampling methods using genetic fuzzy systems for a regression problem. In: Yin, H., Wang, W., Rayward-Smith, V. (eds.) IDEAL 2011. LNCS, vol. 6936, pp. 17–24. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  16. 16.
    Lasota, T., Telec, Z., Trawiński, B., Trawiński, K.: Investigation of the eTS Evolving Fuzzy Systems Applied to Real Estate Appraisal. Journal of Multiple-Valued Logic and Soft Computing 17(2–3), 229–253 (2011)Google Scholar
  17. 17.
    Lughofer, E., Trawiński, B., Trawiński, K., Kempa, O., Lasota, T.: On Employing Fuzzy Modeling Algorithms for the Valuation of Residential Premises. Information Sciences 181, 5123–5142 (2011)CrossRefGoogle Scholar
  18. 18.
    Trawiński, B.: Evolutionary Fuzzy System Ensemble Approach to Model Real Estate Market based on Data Stream Exploration. Journal of Universal Computer Science 19(4), 539–562 (2013)Google Scholar
  19. 19.
    Telec, Z., Trawiński, B., Lasota, T., Trawiński, G.: Evaluation of neural network ensemble approach to predict from a data stream. In: Hwang, D., Jung, J.J., Nguyen, N.-T. (eds.) ICCCI 2014. LNCS, vol. 8733, pp. 472–482. Springer, Heidelberg (2014)Google Scholar
  20. 20.
    Witten, I.H., Frank, E., Hall, M.A.: Data Mining: Practical Machine Learning Tools and Techniques, 3rd edn. Morgan Kaufmann, San Francisco (2011)Google Scholar
  21. 21.
    Trawiński, B., Smętek, M., Telec, Z., Lasota, T.: Nonparametric Statistical Analysis for Multiple Comparison of Machine Learning Regression Algorithms. International Journal of Applied Mathematics and Computer Science 22(4), 867–881 (2012)zbMATHMathSciNetGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Tadeusz Lasota
    • 1
  • Edward Sawiłow
    • 1
  • Bogdan Trawiński
    • 2
  • Marta Roman
    • 3
  • Paulina Marczuk
    • 3
  • Patryk Popowicz
    • 3
  1. 1.Department of Spatial ManagementWrocław University of Environmental and Life SciencesWrocławPoland
  2. 2.Department of Information SystemsWrocław University of TechnologyWrocławPoland
  3. 3.Faculty of Computer Science and ManagementWrocław University of TechnologyWrocławPoland

Personalised recommendations