Architecture Dedicated to Data Integration

  • Jacek Dajda
  • Grzegorz DobrowolskiEmail author
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9011)


The aim of the paper is to present a software architecture dedicated to problem of heterogeneous data integration from a number of rather big data sources. The potential capabilities of the architecture are: distribution, decentralization, extensibility and support for code reuse. By applying scalable Erlang technology and concept of plugin processes the presented architecture seems to be interesting for wide range of application fields, in particular, threats detection in criminal analysis.


Software system architecture Data integration Criminal analysis 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Byrski, A., Kisiel-Dorohinicki, M., Dajda, J., Dobrowolski, G., Nawarecki, E.: Hierarchical multi-agent system for heterogeneous data integration. In: Bouvry, P., González-Vélez, H., Kołodziej, J. (eds.) Intelligent Decision Systems in Large-Scale Distributed Environments. SCI, vol. 362, pp. 165–186. Springer, Heidelberg (2011) Google Scholar
  2. 2.
    Casters, M., Bouman, R., Dongen, J.: Pentaho Kettle Solutions: Building Open Source ETL Solutions with Pentaho Data Integration. Wiley (2010)Google Scholar
  3. 3.
    Kimbal, R., Caserta, J.: The Data WarehouseETL Toolkit: Practical Techniques for Extracting, Cleaning, Conforming, and Delivering Data. Wiley (2004)Google Scholar
  4. 4.
    Schwinn, A., Schelp, J.: Data integration patterns. In: Abramowicz, W., Klein, G. (eds.) Business Information Systems, Preoceedings of BIS 2003, pp. 232–238 (2003)Google Scholar
  5. 5.
    Tatbul, N., Karpenko, O., Convey, C., Yan, J.: Data integration services. Brown University, Computer Science (2001)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  1. 1.AGH University of Science and TechnologyKrakowPoland

Personalised recommendations