Real-Time Near-Infrared Fluorescent Cholangiography During Robotic Single-Site Cholecystectomy

  • Nicolas C. BuchsEmail author


The risk of biliary injury during cholecystectomy has increased with the introduction of laparoscopy, with even greater concerns using the single-site approach. On the other hand, the development of a new robotic single-site platform was seen as a potential technical help. In addition, the introduction of real-time near-infrared fluorescent cholangiography during robotic single-site cholecystectomy can also help in assessing the biliary anatomy and might reduce the risk of biliary injury. Moreover, this technology could shorten the operative time in selected patients and might be useful for the development of augmented reality and image-guided surgery in the future.


Indocyanine green Fluorescent Robotic Single site Cholangiography 

Supplementary material

Video 10.1

Example of standard robotic single-site cholecystectomy (MOV 27,656 kb)

Video 10.2

Example of real-time near-infrared fluorescent cholangiography before dissection of Calot’s triangle during robotic single-site cholecystectomy (MOV 6,732 kb) (12.8 mb)
Video 10.3 Example of real-time near-infrared cholangiography after dissection of Calot’s triangle during robotic single-site cholecystectomy (MOV 13,128 kb)


  1. 1.
    Adamsen S, Hansen OH, Funch-Jensen P, Schulze S, Stage JG, Wara P. Bile duct injury during laparoscopic cholecystectomy: a prospective nationwide series. J Am Coll Surg. 1997;184(6):571–8.PubMedGoogle Scholar
  2. 2.
    Connor S, Garden OJ. Bile duct injury in the era of laparoscopic cholecystectomy. Br J Surg. 2006;93(2):158–68.CrossRefPubMedGoogle Scholar
  3. 3.
    Caputo L, Aitken DR, Mackett MC, Robles AE. Iatrogenic bile duct injuries. The real incidence and contributing factors–implications for laparoscopic cholecystectomy. Am Surg. 1992;58(12):766–71.PubMedGoogle Scholar
  4. 4.
    Jones DB, Soper NJ. Complications of laparoscopic cholecystectomy. Annu Rev Med. 1996;47:31–44.CrossRefPubMedGoogle Scholar
  5. 5.
    Orlando 3rd R, Russell JC, Lynch J, Mattie A. Laparoscopic cholecystectomy. A statewide experience. The Connecticut Laparoscopic Cholecystectomy Registry. Arch Surg. 1993;128(5):494–8.CrossRefPubMedGoogle Scholar
  6. 6.
    Smith EB. Complications of laparoscopic cholecystectomy. J Natl Med Assoc. 1992;84(10):880–2.PubMedCentralPubMedGoogle Scholar
  7. 7.
    Buddingh KT, Nieuwenhuijs VB, van Buuren L, Hulscher JB, de Jong JS, van Dam GM. Intraoperative assessment of biliary anatomy for prevention of bile duct injury: a review of current and future patient safety interventions. Surg Endosc. 2011;25(8):2449–61.PubMedCentralCrossRefPubMedGoogle Scholar
  8. 8.
    Buddingh KT, Weersma RK, Savenije RA, van Dam GM, Nieuwenhuijs VB. Lower rate of major bile duct injury and increased intraoperative management of common bile duct stones after implementation of routine intraoperative cholangiography. J Am Coll Surg. 2011;213(2):267–74.CrossRefPubMedGoogle Scholar
  9. 9.
    Flum DR, Dellinger EP, Cheadle A, Chan L, Koepsell T. Intraoperative cholangiography and risk of common bile duct injury during cholecystectomy. JAMA. 2003;289(13):1639–44.CrossRefPubMedGoogle Scholar
  10. 10.
    Soper NJ, Flye MW, Brunt LM, Stockmann PT, Sicard GA, Picus D, et al. Diagnosis and management of biliary complications of laparoscopic cholecystectomy. Am J Surg. 1993;165(6):663–9.CrossRefPubMedGoogle Scholar
  11. 11.
    Way LW, Stewart L, Gantert W, Liu K, Lee CM, Whang K, et al. Causes and prevention of laparoscopic bile duct injuries: analysis of 252 cases from a human factors and cognitive psychology perspective. Ann Surg. 2003;237(4):460–9.PubMedCentralPubMedGoogle Scholar
  12. 12.
    Stiles BM, Adusumilli PS, Bhargava A, Fong Y. Fluorescent cholangiography in a mouse model: an innovative method for improved laparoscopic identification of the biliary anatomy. Surg Endosc. 2006;20(8):1291–5.CrossRefPubMedGoogle Scholar
  13. 13.
    Marano A, Priora F, Lenti LM, Ravazzoni F, Quarati R, Spinoglio G. Application of fluorescence in robotic general surgery: review of the literature and state of the art. World J Surg. 2013;37(12):2800–11.CrossRefPubMedGoogle Scholar
  14. 14.
    Buchs NC, Hagen ME, Pugin F, Volonte F, Bucher P, Schiffer E, et al. Intra-operative fluorescent cholangiography using indocyanine green during robotic single site cholecystectomy. Int J Med Robot. 2012;8(4):436–40.CrossRefPubMedGoogle Scholar
  15. 15.
    Ishizawa T, Bandai Y, Kokudo N. Fluorescent cholangiography using indocyanine green for laparoscopic cholecystectomy: an initial experience. Arch Surg. 2009;144(4):381–2.CrossRefPubMedGoogle Scholar
  16. 16.
    Spinoglio G, Priora F, Bianchi PP, Lucido FS, Licciardello A, Maglione V, et al. Real-time near-infrared (NIR) fluorescent cholangiography in single-site robotic cholecystectomy (SSRC): a single-institutional prospective study. Surg Endosc. 2013;27(6):2156–62.CrossRefPubMedGoogle Scholar
  17. 17.
    Ishizawa T, Bandai Y, Ijichi M, Kaneko J, Hasegawa K, Kokudo N. Fluorescent cholangiography illuminating the biliary tree during laparoscopic cholecystectomy. Br J Surg. 2010;97(9):1369–77.CrossRefPubMedGoogle Scholar
  18. 18.
    Ishizawa T, Kaneko J, Inoue Y, Takemura N, Seyama Y, Aoki T, et al. Application of fluorescent cholangiography to single-incision laparoscopic cholecystectomy. Surg Endosc. 2011;25(8):2631–6.CrossRefPubMedGoogle Scholar
  19. 19.
    Ishizawa T, Tamura S, Masuda K, Aoki T, Hasegawa K, Imamura H, et al. Intraoperative fluorescent cholangiography using indocyanine green: a biliary road map for safe surgery. J Am Coll Surg. 2009;208(1):e1–4.CrossRefPubMedGoogle Scholar
  20. 20.
    Bucher P, Pugin F, Morel P. Single-port access prosthetic repair for primary and incisional ventral hernia: toward less parietal trauma. Surg Endosc. 2011;25(6):1921–5.CrossRefPubMedGoogle Scholar
  21. 21.
    Bucher P, Pugin F, Morel P. Single-port access laparoscopic radical left colectomy in humans. Dis Colon Rectum. 2009;52(10):1797–801.CrossRefPubMedGoogle Scholar
  22. 22.
    Bucher P, Pugin F, Buchs N, Ostermann S, Charara F, Morel P. Single port access laparoscopic cholecystectomy (with video). World J Surg. 2009;33(5):1015–9.CrossRefPubMedGoogle Scholar
  23. 23.
    Bucher P, Pugin F, Buchs NC, Ostermann S, Morel P. Randomized clinical trial of laparoendoscopic single-site versus conventional laparoscopic cholecystectomy. Br J Surg. 2011;98(12):1695–702.CrossRefPubMedGoogle Scholar
  24. 24.
    Madureira FA, Manso JE, Madureira Fo D, Iglesias AC. Randomized clinical study for assessment of incision characteristics and pain associated with LESS versus laparoscopic cholecystectomy. Surg Endosc. 2013;27(3):1009–15.CrossRefPubMedGoogle Scholar
  25. 25.
    Zhong X, Rui YY, Zhou ZG. Laparoendoscopic single-site versus traditional laparoscopic surgery in patients with cholecystectomy: a meta-analysis. J Laparoendosc Adv Surg Tech A. 2012;22(5):449–55.CrossRefPubMedGoogle Scholar
  26. 26.
    Yeo D, Mackay S, Martin D. Single-incision laparoscopic cholecystectomy with routine intraoperative cholangiography and common bile duct exploration via the umbilical port. Surg Endosc. 2012;26(4):1122–7.CrossRefPubMedGoogle Scholar
  27. 27.
    Buddingh KT, Hofker HS, ten Cate Hoedemaker HO, van Dam GM, Ploeg RJ, Nieuwenhuijs VB. Safety measures during cholecystectomy: results of a nationwide survey. World J Surg. 2011;35(6):1235–41.PubMedCentralCrossRefPubMedGoogle Scholar
  28. 28.
    Buddingh KT, Nieuwenhuijs VB. The critical view of safety and routine intraoperative cholangiography complement each other as safety measures during cholecystectomy. J Gastrointest Surg. 2011;15(6):1069–70.PubMedCentralCrossRefPubMedGoogle Scholar
  29. 29.
    Rawlings A, Hodgett SE, Matthews BD, Strasberg SM, Quasebarth M, Brunt LM. Single-incision laparoscopic cholecystectomy: initial experience with critical view of safety dissection and routine intraoperative cholangiography. J Am Coll Surg. 2010;211(1):1–7.CrossRefPubMedGoogle Scholar
  30. 30.
    Ayloo SM, Buchs NC, Addeo P, Bianco FM, Giulianotti PC. Traditional versus single-site placement of adjustable gastric banding: a comparative study and cost analysis. Obes Surg. 2011;21(7):815–9.CrossRefPubMedGoogle Scholar
  31. 31.
    Morel P, Buchs NC, Iranmanesh P, Pugin F, Buehler L, Azagury DE, et al. Robotic single-site cholecystectomy. J Hepatobiliary Pancreat Sci. 2014;21:18.CrossRefPubMedGoogle Scholar
  32. 32.
    Morel P, Hagen ME, Bucher P, Buchs NC, Pugin F. Robotic single-port cholecystectomy using a new platform: initial clinical experience. J Gastrointest Surg. 2011;15(12):2182–6.CrossRefPubMedGoogle Scholar
  33. 33.
    Vidovszky TJ, Carr AD, Farinholt GN, Ho HS, Smith WH, Ali MR. Single-site robotic cholecystectomy in a broadly inclusive patient population: a prospective study. Ann Surg. 2014;260:134.CrossRefPubMedGoogle Scholar
  34. 34.
    Faybik P, Hetz H. Plasma disappearance rate of indocyanine green in liver dysfunction. Transplant Proc. 2006;38(3):801–2.CrossRefPubMedGoogle Scholar
  35. 35.
    Sherwinter DA. Identification of anomolous biliary anatomy using near-infrared cholangiography. J Gastrointest Surg. 2012;16(9):1814–5.CrossRefPubMedGoogle Scholar
  36. 36.
    Calatayud D, Milone L, Elli EF, Giulianotti PC. ICG-fluorescence identification of a small aberrant biliary canaliculus during robotic cholecystectomy. Liver Int. 2012;32(4):602.CrossRefPubMedGoogle Scholar
  37. 37.
    Buchs NC, Pugin F, Azagury DE, Jung M, Volonte F, Hagen ME, et al. Real-time near-infrared fluorescent cholangiography could shorten operative time during robotic single-site cholecystectomy. Surg Endosc. 2013;27(10):3897–901.CrossRefPubMedGoogle Scholar
  38. 38.
    Schaafsma BE, Mieog JS, Hutteman M, van der Vorst JR, Kuppen PJ, Lowik CW, et al. The clinical use of indocyanine green as a near-infrared fluorescent contrast agent for image-guided oncologic surgery. J Surg Oncol. 2011;104(3):323–32.PubMedCentralCrossRefPubMedGoogle Scholar
  39. 39.
    Speich R, Saesseli B, Hoffmann U, Neftel KA, Reichen J. Anaphylactoid reactions after indocyanine-green administration. Ann Intern Med. 1988;109(4):345–6.CrossRefPubMedGoogle Scholar
  40. 40.
    Volonte F, Buchs NC, Pugin F, Spaltenstein J, Schiltz B, Jung M, et al. Augmented reality to the rescue of the minimally invasive surgeon. The usefulness of the interposition of stereoscopic images in the Da Vinci robotic console. Int J Med Robot. 2013;9(3):e34–8.CrossRefPubMedGoogle Scholar
  41. 41.
    Volonte F, Pugin F, Buchs NC, Spaltenstein J, Hagen M, Ratib O, et al. Console-integrated stereoscopic OsiriX 3D volume-rendered images for da Vinci colorectal robotic surgery. Surg Innov. 2013;20(2):158–63.CrossRefPubMedGoogle Scholar
  42. 42.
    Buchs NC, Volonte F, Pugin F, Toso C, Fusaglia M, Gavaghan K, et al. Augmented environments for the targeting of hepatic lesions during image-guided robotic liver surgery. J Surg Res. 2013;184(2):825–31.CrossRefPubMedGoogle Scholar
  43. 43.
    Volonte F, Buchs NC, Pugin F, Spaltenstein J, Jung M, Ratib O, et al. Stereoscopic augmented reality for da Vincii robotic biliary surgery. Int J Surg Case Rep. 2013;4(4):365–7.PubMedCentralCrossRefPubMedGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  1. 1.Department of Surgery, Clinic for Visceral and Transplantation Surgery, University Hospital of Geneva, Faculty of MedicineUniversity of GenevaGenevaSwitzerland

Personalised recommendations