Effect of Water on Subduction of Continental Materials to the Deep Earth

  • Hiroki Ichikawa
  • Kenji Kawai
  • Shinji Yamamoto
  • Masanori Kameyama
Part of the Springer Geophysics book series (SPRINGERGEOPHYS)


The flows in the subduction channels with wet mantle wedge are calculated by 1-D finite difference method with fine numerical resolutions. The water content largely affects the viscosity of the mantle wedge. Previous simulation result using dry rheology on the mantle wedge shows that viscosity of the subduction channels controls the process and that the sustainable thickness of the channel in the deep mantle is ~2–3 km. However, little is known about the effect of the water content in the mantle wedge on the subduction channels. Here, in order to estimate the supply rate of continental materials to the deep mantle with water-rich environment on the mantle wedge, we have conducted a numerical simulation of a subduction channel. The results show that the water content controls the flux of the continental materials especially when temperature of mantle wedge is high. Therefore, the water content of the mantle wedge can be more important in the ancient mantle because of its high temperature.


Subduction erosion Sediment subduction Subduction channel Ultrahigh-pressure metamorphic rocks 



The authors thank Dr. Taras Gerya and Dr. Frédéric Deschamps for their useful comments. This study was supported by Global COE program “DEEP EARTH MINERALOGY” and KAKENHI 22740297 and 24840020. Several figures have been realized using matplotlib [Hunter 2007]. 


  1. Afonso JC, Zlotnik S (2011) The subductability of continental lithosphere: the before and after story. In: Brown D, Ryan PD (eds) Arc-continent collision, frontiers in earth sciences. Springer, BerlinGoogle Scholar
  2. Armstrong RL (1991) The persistent myth of crustal growth. Aust J Earth Sci 38(5):613–630CrossRefGoogle Scholar
  3. Babeyko AY, Sobolev SV (2008) High-resolution numerical modeling of stress distribution in visco-elasto-plastic subducting slabs. Lithos 103(1–2):205–216. doi: 10.1016/j.lithos.2007.09.015 CrossRefGoogle Scholar
  4. Belousova EA, Kostitsyn YA, Griffin WL, Begg GC, O’Reilly SY, Pearson NJ (2010) The growth of the continental crust: constraints from zircon Hf-isotope data. Lithos 119(3–4):457–466CrossRefGoogle Scholar
  5. Burov E, Jolivet L, Le Pourhiet L, Poliakov A (2001) A thermomechanical model of exhumation of high pressure (HP) and ultra-high pressure (UHP) metamorphic rocks in Alpine-type collision belts. Tectonophysics 342(1–2):113–136. doi: 10.1016/S0040-1951(01)00158-5 CrossRefGoogle Scholar
  6. Campbell IH, Taylor SR (1983) No water, no granites—no oceans, no continents. Geophys Res Lett 10(11):1061–1064CrossRefGoogle Scholar
  7. Clift P, Vannucchi P (2004) Controls on tectonic accretion versus erosion in subduction zones: implications for the origin and recycling of the continental crust. Rev Geophys 42(2), RG2001. doi: 10.1029/2003rg000127
  8. Clift PD, Vannucchi P, Morgan JP (2009) Crustal redistribution, crust-mantle recycling and Phanerozoic evolution of the continental crust. Earth Sci Rev 97(1–4):80–104. doi: 10.1016/j.earscirev.2009.10.003 CrossRefGoogle Scholar
  9. Cloos M, Shreve R (1988a) Subduction-channel model of prism accretion, melange formation, sediment subduction, and subduction erosion at convergent plate margins: 1. Background and description. Pure Appl Geophys 128(3–4):455–500. doi: 10.1007/BF00874548 CrossRefGoogle Scholar
  10. Cloos M, Shreve R (1988b) Subduction-channel model of prism accretion, melange formation, sediment subduction, and subduction erosion at convergent plate margins: 2. Implications and discussion. Pure Appl Geophys 128(3–4):501–545. doi: 10.1007/BF00874549 CrossRefGoogle Scholar
  11. Cogley JG (1984) Continental margins and the extent and number of the continents. Rev Geophys Space Phys 22(2):101–122CrossRefGoogle Scholar
  12. Collot JY, Ribodetti A, Agudelo W, Sage F (2011) The South Ecuador subduction channel: evidence for a dynamic mega-shear zone from 2D fine-scale seismic reflection imaging and implications for material transfer. J Geophys Res 116(B11). doi: 10.1029/2011jb008429
  13. Currie CA, Beaumont C, Huismans RS (2007) The fate of subducted sediments: a case for backarc intrusion and underplating. Geology 35(12):1111. doi: 10.1130/g24098a.1 CrossRefGoogle Scholar
  14. Dobrzhinetskaya L, Wirth R, Greenii H (2006) Nanometric inclusions of carbonates in Kokchetav diamonds from Kazakhstan: a new constraint for the depth of metamorphic diamond crystallization. Earth Planet Sci Lett 243(1–2):85–93. doi: 10.1016/j.epsl.2005.11.030 CrossRefGoogle Scholar
  15. Dziewonski AM, Anderson DL (1981) Preliminary reference Earth model. Phys Earth Planet Inter 25(4):297–356CrossRefGoogle Scholar
  16. Eberle MA, Grasset O, Sotin C (2002) A numerical study of the interaction between the mantle wedge, subducting slab, and overriding plate. Phys Earth Planet Inter 134(3–4):191–202CrossRefGoogle Scholar
  17. Gerya TV, Stöckhert B (2002) Exhumation rates of high pressure metamorphic rocks in subduction channels: the effect of Rheology. Geophys Res Lett 29(8):102–104. doi: 10.1029/2001GL014307 CrossRefGoogle Scholar
  18. Gerya T, Stöckhert B (2006) Two-dimensional numerical modeling of tectonic and metamorphic histories at active continental margins. Int J Earth Sci 95(2):250–274. doi: 10.1007/s00531-005-0035-9 CrossRefGoogle Scholar
  19. Gerya TV, Stöckhert B Perchuk AL (2002) Exhumation of high-pressure metamorphic rocks in a subduction channel: a numerical simulation. Tectonics 21(6):6-1–6-19. doi: 10.1029/2002TC001406
  20. Gerya TV, Yuen DA (2003) Rayleigh-Taylor instabilities from hydration and melting propel “cold plumes” at subduction zones. Earth Planet Sci Lett 212(1–2):47–62. doi: 10.1016/S0012-821X(03)00265-6 CrossRefGoogle Scholar
  21. Gerya TV, Connolly JAD, Yuen DA, Gorczyk W, Capel AM (2006) Seismic implications of mantle wedge plumes. Phys Earth Planet Inter 156(1–2):59–74. doi: 10.1016/j.pepi.2006.02.005 CrossRefGoogle Scholar
  22. Gorczyk W, Gerya TV, Connolly JAD, Yuen DA (2007) Growth and mixing dynamics of mantle wedge plumes. Geology 35(7):587–590. doi: 10.1130/G23485A.1 CrossRefGoogle Scholar
  23. Hall PS, Kincaid C (2001) Diapiric flow at subduction zones: a recipe for rapid transport. Science 292(5526):2472–2475. doi: 10.1126/science.1060488 CrossRefGoogle Scholar
  24. Hargraves RB (1986) Faster spreading or greater ridge length in the Archean? Geology 14(9):750–752CrossRefGoogle Scholar
  25. Hofmann AW (1997) Mantle geochemistry: the message from oceanic volcanism. Nature 385(6613):218–229CrossRefGoogle Scholar
  26. Honda S, Saito M (2003) Small-scale convection under the back-arc occurring in the low viscosity wedge. Earth Planet Sci Lett 216(4):703–715. doi: 10.1016/S0012-821X(03)00537-5 CrossRefGoogle Scholar
  27. Honda S, Saito M, Nakakuki T (2002) Possible existence of small-scale convection under the back arc. Geophys Res Lett 29(21):2043. doi: 10.1029/2002GL015853 CrossRefGoogle Scholar
  28. Honda S, Yoshida T, Aoike K (2007) Spatial and temporal evolution of arc volcanism in the northeast Honshu and Izu-Bonin Arcs: evidence of small-scale convection under the island arc? Island Arc 16(2):214–223. doi: 10.1111/j.1440-1738.2007.00567.x CrossRefGoogle Scholar
  29. Hunter J D (2007) Matplotlib: A 2D graphics environment, Comput Sci Eng 9(3):90–95. doi: 10.1109/MCSE.2007.55
  30. Ichikawa H, Kameyama M, Kawai K (2013a) Mantle convection with continental drift and heat source around the mantle transition zone. Gondwana Res 24(3–4):1080–1090. doi: 10.1016/j.gr.2013.02.001 CrossRefGoogle Scholar
  31. Ichikawa H, Kawai K, Yamamoto S, Kameyama M (2013b) Supply rate of continental materials to the deep mantle through subduction channels. Tectonophysics 592:46–52. doi: 10.1016/j.tecto.2013.02.001 CrossRefGoogle Scholar
  32. Irifune T, Ringwood AE, Hibberson WO (1994) Subduction of continental crust and terrigenous and pelagic sediments: an experimental study. Earth Planet Sci Lett 126(4):351–368CrossRefGoogle Scholar
  33. Iwamori H, McKenzie D, Takahashi E (1995) Melt generation by isentropic mantle upwelling. Earth Planet Sci Lett 134(3–4):253–266CrossRefGoogle Scholar
  34. Karato S-I, Jung H (2003) Effects of pressure on high-temperature dislocation creep in olivine. Phil Mag 83(3):401–414. doi: 10.1080/0141861021000025829 CrossRefGoogle Scholar
  35. Kawai K, Tsuchiya T (2010) Ab initio investigation of high-pressure phase relation and elasticity in the NaAlSi2O6 system. Geophys Res Lett 37(17). doi: 10.1029/2010gl044310
  36. Kawai K, Tsuchiya T (2012) First principles investigations on the elasticity and phase stability of grossular garnet. J Geophys Res 117(B2):B02202. doi: 10.1029/2011jb008529 Google Scholar
  37. Kawai K, Tsuchiya T, Tsuchiya J, Maruyama S (2009) Lost primordial continents. Gondwana Res 16(3–4):581–586. doi: 10.1016/j.gr.2009.05.012 CrossRefGoogle Scholar
  38. Kawai K, Tsuchiya T, Maruyama S (2010) The second continent. J Geogr 119(6):1197–1214CrossRefGoogle Scholar
  39. Kawai K, Yamamoto S, Tsuchiya T, Maruyama S (2013) The second continent: Existence of granitic continental materials around the bottom of the mantle transition zone. Geosci Front 4(1):1–6. doi: 10.1016/j.gsf.2012.08.003 CrossRefGoogle Scholar
  40. Kawazoe T, Karato S, Otsuka K, Jing Z, Mookherjee M (2009) Shear deformation of dry polycrystalline olivine under deep upper mantle conditions using a rotational Drickamer apparatus (RDA). Phys Earth Planet Inter 174(1–4):128–137. doi: 10.1016/j.pepi.2008.06.027 CrossRefGoogle Scholar
  41. Komiya T (2004) Material circulation model including chemical differentiation within the mantle and secular variation of temperature and composition of the mantle. Phys Earth Planet Inter 146(1–2):333–367. doi: 10.1016/j.pepi.2003.03.001 CrossRefGoogle Scholar
  42. Komiya T, Maruyama S (2007) A very hydrous mantle under the western Pacific region: Implications for formation of marginal basins and style of Archean plate tectonics. Gondwana Res 11(1–2):132–147. doi: 10.1016/j.gr.2006.02.006 CrossRefGoogle Scholar
  43. Korenaga J (2006) Archean geodynamics and the thermal evolution of Earth. Archean Geodynamics and Environments, vol 164. AGU, Washington, DC, pp 7–32CrossRefGoogle Scholar
  44. Li ZH, Xu ZQ, Gerya TV (2011) Flat versus steep subduction: contrasting modes for the formation and exhumation of high- to ultrahigh-pressure rocks in continental collision zones. Earth Planet Sci Lett 301(1–2):65–77. doi: 10.1016/j.epsl.2010.10.014 CrossRefGoogle Scholar
  45. Manea VC, Manea M, Kostoglodov V, Sewell G (2005) Thermo-mechanical model of the mantle wedge in Central Mexican subduction zone and a blob tracing approach for the magma transport. Phys Earth Planet Inter 149(1–2):165–186. doi: 10.1016/j.pepi.2004.08.024 CrossRefGoogle Scholar
  46. Maruyama S, Ikoma M, Genda H, Hirose K, Yokoyama T, Santosh M (2013) The naked planet Earth: most essential pre-requisite for the origin and evolution of life. Geosci Front 4(2):141–165. doi: 10.1016/j.gsf.2012.11.001 CrossRefGoogle Scholar
  47. Moore GF, Bangs NL, Taira A, Kuramoto S, Pangborn E, Tobin HJ (2007) Three-dimensional splay fault geometry and implications for tsunami generation. Science 318(5853):1128–1131. doi: 10.1126/science.1147195 CrossRefGoogle Scholar
  48. Murphy DT, Collerson KD, Kamber BS (2002) Lamproites from Gaussberg, Antarctica: possible transition zone melts of Archaean subducted sediments. J Petrol 43(6):981–1001CrossRefGoogle Scholar
  49. Obata M, Takazawa E (2004) Compositional continuity and discontinuity in the Horoman Peridotite, Japan, and its Implication for melt extraction processes in partially molten upper mantle. J Petrol 45(2):223–234. doi: 10.1093/petrology/egg106 CrossRefGoogle Scholar
  50. Ono S (1998) Stability limits of hydrous minerals in sediment and mid-ocean ridge basalt compositions: Implications for water transport in subduction zones. J Geophys Res 103(B8):18253–18267. doi: 10.1029/98jb01351 CrossRefGoogle Scholar
  51. Pitzer KS, Sterner SM (1995) Equations of state valid continuously from zero to extreme pressures with H2O and CO2 as examples. Int J Thermophys 16(2):511–518CrossRefGoogle Scholar
  52. Raimbourg H, Jolivet L, Leroy Y (2007) Consequences of progressive eclogitization on crustal exhumation, a mechanical study. Geophys J Int 168(1):379–401. doi: 10.1111/j.1365-246X.2006.03130.x CrossRefGoogle Scholar
  53. Ranalli G (1995). Rheology of the earth, 2nd ed. Chapman and Hall, LondonGoogle Scholar
  54. Ranalli G (1997) Rheology of the lithosphere in space and time. Geol Soc London Spec Publ 121:19–37. doi: 10.1144/GSL.SP.1997.121.01.02
  55. Renner J, Stöckhert B, Zerbian A, Röller K, Rummel F (2001) An experimental study into the rheology of synthetic polycrystalline coesite aggregates. J Geophys Res B Solid Earth 106(B9):19411–19429CrossRefGoogle Scholar
  56. Scholl DW, Von Huene R (2007) Crustal recycling at modern subduction zones applied to the past-issues of growth and preservation of continental basement crust, mantle geochemistry, and supercontinent reconstruction Geol Soc Amer Mem 200:9–32Google Scholar
  57. Sizova E, Gerya T, Brown M (2012) Exhumation mechanisms of melt-bearing ultrahigh pressure crustal rocks during collision of spontaneously moving plates. J Metamorph Geol 30(9):927–955. doi: 10.1111/j.1525-1314.2012.01004.x CrossRefGoogle Scholar
  58. Sobolev SV, Babeyko AY (2005) What drives orogeny in the Andes? Geology 33(8):617–620CrossRefGoogle Scholar
  59. Stern RJ, Scholl DW (2010) Yin and yang of continental crust creation and destruction by plate tectonic processes. Int Geol Rev 52(1):1–31CrossRefGoogle Scholar
  60. Tamura Y (1994) Genesis of island arc magmas by mantle-derived bimodal magmatism: evidence from the Shirahama Group, Japan. J Petrol 35(3):619–645. doi: 10.1093/petrology/35.3.619 CrossRefGoogle Scholar
  61. Von Huene R, Scholl DW (1991) Observations at convergent margins concerning sediment subduction, subduction erosion, and the growth of continental crust. Rev Geophys 29(3):279–316CrossRefGoogle Scholar
  62. Warren CJ, Beaumont C, Jamieson R (2008) Formation and exhumation of ultra-high-pressure rocks during continental collision: role of detachment in the subduction channel. Geochem Geophys Geosyst 9(4). doi: 10.1029/2007GC001839
  63. Wu Y, Fei Y, Jin Z, Liu X (2009) The fate of subducted upper continental crust: an experimental study. Earth Planet Sci Lett 282(1–4):275–284. doi: 10.1016/j.epsl.2009.03.028 CrossRefGoogle Scholar
  64. Yamamoto S, Senshu H, Rino S, Omori S, Maruyama S (2009a) Granite subduction: arc subduction, tectonic erosion and sediment subduction. Gondwana Res 15(3–4):443–453. doi: 10.1016/j.gr.2008.12.009 CrossRefGoogle Scholar
  65. Yamamoto S, Nakajima J, Hasegawa A, Maruyama S (2009b) Izu-Bonin arc subduction under the Honshu island, Japan: evidence from geological and seismological aspect. Gondwana Res 16(3–4):572–580. doi: 10.1016/j.gr.2009.05.014 CrossRefGoogle Scholar
  66. Zhang J, Li B, Utsumi W, Liebermann RC (1996) In situ X-ray observations of the coesite-stishovite transition: reversed phase boundary and kinetics. Phys Chem Miner 23(1):1–10CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Hiroki Ichikawa
    • 1
    • 2
  • Kenji Kawai
    • 2
    • 3
    • 5
  • Shinji Yamamoto
    • 4
  • Masanori Kameyama
    • 1
  1. 1.Geodynamics Research CenterEhime UniversityMatsuyamaJapan
  2. 2.Earth-Life Science InstituteTokyo Institute of TechnologyMeguro, TokyoJapan
  3. 3.Department of Earth and Planetary SciencesTokyo Institute of TechnologyMeguro, TokyoJapan
  4. 4.Department of Earth Science and Astronomy, Graduate School of Arts and SciencesUniversity of TokyoMeguro, TokyoJapan
  5. 5.Department of Earth Science and Astronomy, Graduate School of Arts and SciencesUniversity of TokyoMeguro, TokyoJapan

Personalised recommendations