Imaging Mantle Heterogeneity with Upper Mantle Seismic Discontinuities

Chapter
Part of the Springer Geophysics book series (SPRINGERGEOPHYS)

Abstract

We use underside reflections of S wave seismic energy arriving as precursors to the seismic phase SS to image the depth and impedance contrastpresent across mantle discontinuities in the depth range of 230–380 km beneath the Pacific basin. A number of past studies have identified seismic discontinuities at these depths, known as the X-discontinuities, ascribing the interfaces to a variety of mineral physical mechanisms, including the coesite to stishovite phase transition, the formation of hydrous Phase A, and/or the reorganization of orthopyroxene into a C2/c monoclinic structure. Thus, the presence of the X-discontinuity (abbreviated here as the X) may be indicative of the nature of mantle heterogeneity. This study finds discontinuities associated with the X Pacific-wide, with SS precursory reflections present beneath the subduction, hot spots, and ridges. Where detected, the X is at an average depth of 293 ± 65 km and the precursor amplitudes indicate a mean shear impedance contrast of 2.3 ± 1.6 %. We model mantle heterogeneity by comparing the depth and the impedance contrasts at the X with predictions for seismic structure from a mineral physics model in which the mantle is considered to be a mechanically mixed bulk assemblage of subducted basalt and harzburgite. In this model, the average mantle composition of the Pacific is fit by a mixture of ~20 % basalt and 80 % harzburgite, roughly consistent with the bulk chemistry of mantle peridotite (18 % basalt, 82 % harzburgite). In some regions beneath the hot spots and subduction, there is evidence for a bulk chemistry enriched in basalt (basalt fraction ~30–35 %), lending evidence to the hypothesis that the mantle is laterally heterogeneous and that dynamics are stirring an enriched component, perhaps from the deep or shallow Earth, into the upper mantle.

Keywords

SS precursors X-discontinuity Coesite Stishovite Mantle heterogeneity Basalt enrichment 

References

  1. Akaogi M, Akimoto SI (1980) High-pressure stability of a dense hydrous magnesian silicate Mg23Si8O42H6 and some geophysical implications. J Geophys Res 85(NB12):6944–6948CrossRefGoogle Scholar
  2. Akaogi M, Oohata M, Kojitani H, Kawaji H (2011) Thermodynamic properties of stishovite by low-temperature heat capacity measurements and the coesite-stishovite transition boundary. Am Mineral 96(8–9):1325–1330CrossRefGoogle Scholar
  3. Aki K, Richards P (2002) Quantitative seismology, 2nd edn. University Science Books, Sausalito, 700 ppGoogle Scholar
  4. Akimoto S, Fujisawa H (1966) Olivine-spinel transition in system Mg2SiO4-Fe2SiO4 at 800 °C. Earth Planet Sci Lett 1(4):237–240CrossRefGoogle Scholar
  5. Ammon CJ (1991) The isolation of receiver effects from teleseismic p-wave-forms. Bull Seismol Soc Am 81(6):2504–2510Google Scholar
  6. An Y, Gu YJ, Sacchi MD (2007) Imaging mantle discontinuities using least squares Radon transform. J Geophys Res Solid Earth 112(B10)Google Scholar
  7. Bagley B, Revenaugh J (2008) Upper mantle seismic shear discontinuities of the pacific. J Geophys Res Solid Earth 113(B12)Google Scholar
  8. Bagley B, Courtier AM, Revenaugh J (2009) Melting in the deep upper mantle oceanward of the Honshu slab. Phys Earth Planet Inter 175(3–4):137–144CrossRefGoogle Scholar
  9. Bai L, Ritsema J (2013) The effect of large-scale shear-velocity heterogeneity on SS precursor amplitudes. Geophys Res Lett 40(23):6054–6058CrossRefGoogle Scholar
  10. Ballmer MD, Ito G, Wolfe CJ, Solomon SC (2013) Double layering of a thermochemical plume in the upper mantle beneath Hawaii. Earth Planet Sci Lett 376:155–164CrossRefGoogle Scholar
  11. Bassin C, Laske G, Masters G (2000) The current limits of resolution for surface wave tomography in North America. Eos Trans 81:F897Google Scholar
  12. Bercovici D, Karato S (2003) Whole-mantle convection and the transition-zone water filter. Nature 425(6953):39–44CrossRefGoogle Scholar
  13. Bina CR, Wood BJ (1987) Olivine-spinel transitions—experimental and thermodynamic constraints and implications for the nature of the 400-Km seismic discontinuity. J Geophys Res Solid Earth Planets 92(B6):4853–4866CrossRefGoogle Scholar
  14. Bina CR, Helffrich G (1994) Phase-transition Clapeyron slopes and transition zone seismic discontinuity topography. J Geophys Res Solid Earth 99(B8):15853–15860CrossRefGoogle Scholar
  15. Birch F (1952) Elasticity and constitution of the Earth’s interior. J Geophys Res 37(2):227–286CrossRefGoogle Scholar
  16. Bird P (2003) An updated digital model of plate boundaries. Geochem Geophys Geosystems 4. doi: 10.1029/2001GC000252
  17. Brunet D, Yuen DA (2000) Mantle plumes pinched in the transition zone. Earth Planet Sci Lett 178(1–2):13–27CrossRefGoogle Scholar
  18. Cammarano F, Goes S, Vacher P, Giardini D (2003) Inferring upper-mantle temperatures from seismic velocities. Phys Earth Planet Inter 138(3–4):197–222CrossRefGoogle Scholar
  19. Chaljub E, Tarantola A (1997) Sensitivity of SS precursors to topography on the upper-mantle 660-km discontinuity. Geophys Res Lett 24(21):2613–2616CrossRefGoogle Scholar
  20. Chambers K, Deuss A, Woodhouse JH (2005) Reflectivity of the 410-km discontinuity from PP and SS precursors. J Geophys Res Solid Earth 110(B2):B02301. doi:10.1029/02004JB003345 CrossRefGoogle Scholar
  21. Christensen UR, Yuen DA (1985) Layered convection induced by phase-transitions. J Geophys Res Solid Earth Planets 90(NB12):291–300CrossRefGoogle Scholar
  22. Courtier AM, Bagley B, Revenaugh J (2007) Whole mantle discontinuity structure beneath Hawaii. Geophys Res Lett 34(17)Google Scholar
  23. Courtillot V, Davaille A, Besse J, Stock J (2003) Three distinct types of hotspots in the Earth’s mantle. Earth Planet Sci Lett 205(3–4):295–308CrossRefGoogle Scholar
  24. Dasgupta R, Mallik A, Tsuno K, Withers AC, Hirth G, Hirschmann MM (2013) Carbon-dioxide-rich silicate melt in the Earth’s upper mantle. Nature 493(7431):211–222CrossRefGoogle Scholar
  25. Deschamps F, Li Y, Tackley PJ (2015) Large-scale thermo-chemical structure of the deep mantle: observations and models, this volumeGoogle Scholar
  26. Deuss A (2009) Global observations of mantle discontinuities using SS and PP precursors. Surv Geophys 30(4–5):301–326CrossRefGoogle Scholar
  27. Deuss A, Woodhouse J (2001) Seismic observations of splitting of the mid-transition zone discontinuity in Earth’s mantle. Science 294(5541):354–357CrossRefGoogle Scholar
  28. Deuss A, Woodhouse JH (2002) A systematic search for mantle discontinuities using SS-precursors. Geophys Res Lett 29(8)Google Scholar
  29. Deuss A, Redfern SAT, Chambers K, Woodhouse JH (2006) The nature of the 660-kilometer discontinuity in Earth’s mantle from global seismic observations of PP precursors. Science 311(5758):198–201CrossRefGoogle Scholar
  30. Dziewonski AM, Anderson DL (1981) Preliminary reference Earth model. Phys Earth Planet Inter 25(4):297–356CrossRefGoogle Scholar
  31. Eagar KC, Fouch MJ, James DE (2010) Receiver function imaging of upper mantle complexity beneath the Pacific Northwest. U.S. Earth Planet Sci Lett 297(1–2):141–153CrossRefGoogle Scholar
  32. Efron B, Tibshirani R (1986) Bootstrap methods for standard errors, confidence intervals, and other measures of statistical accuracy. Stat Sci 1(1):54–75CrossRefGoogle Scholar
  33. Farnetani CG, Samuel H (2005) Beyond the thermal plume paradigm. Geophys Res Lett 32(7)Google Scholar
  34. Fei Y, Bertka C (1999) Phase transitions in the Earth’s mantle and mantle mineralogy. In: Fei Y, Bertka C, Mysen B (eds) Mantle petrology: field observations and high pressure experimentation. The Geochemical Society, Houston, pp 189–207Google Scholar
  35. Flanagan MP, Shearer PM (1998a) Topography on the 410-km seismic velocity discontinuity near subduction zones from stacking of sS, sP, and pP precursors. J Geophys Res Solid Earth 103(B9):21165–21182CrossRefGoogle Scholar
  36. Flanagan MP, Shearer PM (1998b) Global mapping of topography on transition zone velocity discontinuities by stacking SS precursors. J Geophys Res Solid Earth 103(B2):2673–2692CrossRefGoogle Scholar
  37. Flanagan MP, Shearer PM (1999) A map of topography on the 410-km discontinuity from PP precursors. Geophys Res Lett 26(5):549–552CrossRefGoogle Scholar
  38. Forte AM, Woodward RL (1997) Seismic-geodynamic constraints on three-dimensional structure, vertical flow, and heat transfer in the mantle. J Geophys Res Solid Earth 102(B8):17981–17994CrossRefGoogle Scholar
  39. French S, Lekic V, Romanowicz B (2013) Waveform tomography reveals channeled flow at the base of the oceanic asthenosphere. Science 342(6155):227–230CrossRefGoogle Scholar
  40. Fuchs K, Müller G (1971) Computation of synthetic seismograms with the reflectivity method and comparison with observations. Geophys J Roy Astron Soc 23:417–433CrossRefGoogle Scholar
  41. Gossler J, Kind R (1996) Seismic evidence for very deep roots of continents. Earth Planet Sci Lett 138(1–4):1–13CrossRefGoogle Scholar
  42. Grand SP, Helmberger DV (1984) Upper mantle shear structure of North-America. Geophys J Roy Astron Soc 76(2):399–438CrossRefGoogle Scholar
  43. Green DH, Ringwood AE (1967) An experimental investigation of gabbro to eclogite transformation and its petrological applications. Geochim Cosmochim Acta 31(5):767–833CrossRefGoogle Scholar
  44. Gu Y, Dziewonski AM, Agee CB (1998) Global de-correlation of the topography of transition zone discontinuities. Earth Planet Sci Lett 157(1–2):57–67CrossRefGoogle Scholar
  45. Gu YJ, Dziewonski AM (2002) Global variability of transition zone thickness. J Geophys Res Solid Earth 107(B7):2135. doi:10.1029/2001JB000489 CrossRefGoogle Scholar
  46. Gu YJ, Dziewonski AM, Ekstrom G (2001) Preferential detection of the Lehmann discontinuity beneath continents. Geophys Res Lett 28(24):4655–4658CrossRefGoogle Scholar
  47. Gu YJ, Dziewonski AM, Ekstrom G (2003) Simultaneous inversion for mantle shear velocity and topography of transition zone discontinuities. Geophys J Int 154(2):559–583CrossRefGoogle Scholar
  48. Helffrich G (2000) Topography of the transition zone seismic discontinuities. Rev Geophys 38(1):141–158CrossRefGoogle Scholar
  49. Hier-Majumder S, Abbott ME (2010) Influence of dihedral angle on the seismic velocities in partially molten rocks. Earth Planet Sci Lett 299(1–2):23–32CrossRefGoogle Scholar
  50. Hirschmann MM (2010) Partial melt in the oceanic low velocity zone. Phys Earth Planet Inter 179(1–2):60–71CrossRefGoogle Scholar
  51. Hirschmann MM, Stolper EM (1996) A possible role for garnet pyroxenite in the origin of the “garnet signature” in MORB. Contrib Miner Petrol 124(2):185–208CrossRefGoogle Scholar
  52. Houser C, Williams Q (2010) Reconciling pacific 410 and 660 km discontinuity topography, transition zone shear velocity patterns, and mantle phase transitions. Earth Planet Sci Lett 296(3–4):255–266CrossRefGoogle Scholar
  53. Houser C, Masters G, Flanagan MP, Shearer PM (2008) Determination and analysis of long-wavelength transition zone structure using SS precursors. Geophys J Int 174:178–194CrossRefGoogle Scholar
  54. Huang S, Hall PS, Jackson MG (2011) Geochemical zoning of volcanic chains associated with Pacific hotspots. Nat Geosci 4(12):874–878CrossRefGoogle Scholar
  55. Ito E, Takahashi E (1989) Postspinel transformations in the system Mg2SiO4-Fe2SiO4 and some geophysical implications. J Geophys Res Solid Earth Planets 94(B8):10637–10646CrossRefGoogle Scholar
  56. Jeanloz R, Thompson AB (1983) Phase-transitions and mantle discontinuities. Rev Geophys 21(1):51–74CrossRefGoogle Scholar
  57. Jeffreys H (1939) The times of P, S and SKS, and the Velocities of P and S. Mon Notations R Astron Soc Geophys Suppl 4:498–533CrossRefGoogle Scholar
  58. Jordan TH (1975) Continental tectosphere. Rev Geophys 13(3):1–12CrossRefGoogle Scholar
  59. Karato S (1992) On the Lehmann discontinuity. Geophys Res Lett 19(22):2255–2258CrossRefGoogle Scholar
  60. Karato S (2006) Remote sensing of hydrogen in Earth’s mantle. Water Nominally Anhydrous Miner 62:343–375Google Scholar
  61. Katsura T, Ito E (1989) The system Mg2SiO4-Fe2SiO4 at high-pressures and temperatures—precise determination of stabilities of olivine, modified spinel, and spinel. J Geophys Res Solid Earth Planets 94(B11):15663–15670CrossRefGoogle Scholar
  62. Khan A, Koch S, Shankland TJ, Zunino A, Connolly JAD (2015) Relationships between seismic wave-speed, density, and electrical conductivity beneath australia from seismology, mineralogy, and laboratory-based conductivity profiles, this volumeGoogle Scholar
  63. Lawrence JF, Shearer PM (2008) Imaging mantle transition zone thickness with SdS-SS finite-frequency sensitivity kernels. Geophys J Int 174:143–158CrossRefGoogle Scholar
  64. Lebedev S, Chevrot S, van der Hilst RD (2003) Correlation between the shear-speed structure and thickness of the mantle transition zone. Phys Earth Planet Inter 136(1–2):25–40CrossRefGoogle Scholar
  65. Lee DK, Grand SP (1996) Depth of the upper mantle discontinuities beneath the East Pacific Rise. Geophys Res Lett 23(23):3369–3372CrossRefGoogle Scholar
  66. Lehmann I (1961) S and the structure of the upper mantle. Geophys J R Astron Soc 4:124–138CrossRefGoogle Scholar
  67. Li X, Kind R, Priestley K, Sobolev SV, Tilmann F, Yuan X, Weber M (2000) Mapping the Hawaiian plume conduit with converted seismic waves. Nature 405(6789):938–941CrossRefGoogle Scholar
  68. Liu L (1976) The high-pressure phases of MgSiO3. Earth Planet Sci Lett 31(2):200–208CrossRefGoogle Scholar
  69. Liu J, Topor L, Zhang J, Navrotsky A, Liebermann RC (1996) Calorimetric study of the coesite stishovite transformation and calculation of the phase boundary. Phys Chem Miner 23(1):11–16CrossRefGoogle Scholar
  70. Montelli R, Nolet G, Dahlen FA, Masters G, Engdahl ER, Hung SH (2004) Finite-frequency tomography reveals a variety of plumes in the mantle. Science 303(5656):338–343CrossRefGoogle Scholar
  71. Nataf HC (2000) Seismic imaging of mantle plumes. Annu Rev Earth Planet Sci 28:391–417CrossRefGoogle Scholar
  72. Niazi M, Anderson DL (1965) Upper mantle structure of western North America from apparent velocities of P waves. J Geophys Res 70(18):4633–4640CrossRefGoogle Scholar
  73. Niu FL, Inoue H, Suetsugu D, Kanjo K (2000) Seismic evidence for a thinner mantle transition zone beneath the South Pacific Superswell. Geophys Res Lett 27(13):1981–1984CrossRefGoogle Scholar
  74. Niu FL, Solomon SC, Silver PG, Suetsugu D, Inoue H (2002) Mantle transition-zone structure beneath the South Pacific Superswell and evidence for a mantle plume underlying the society hotspot. Earth Planet Sci Lett 198(3–4):371–380CrossRefGoogle Scholar
  75. Ohtani E, Litasov K, Hosoya T, Kubo T, Kondo T (2004) Water transport into the deep mantle and formation of a hydrous transition zone. Phys Earth Planet Inter 143–44:255–269CrossRefGoogle Scholar
  76. Putirka KD (2005) Mantle potential temperatures at Hawaii, Iceland, and the mid-ocean ridge system, as inferred from olivine phenocrysts: Evidence for thermally driven mantle plumes. Geochem Geophys Geosyst 6Google Scholar
  77. Rawlinson N, Kennett BLN, Salmon M, Glen RA (2015) Origin of lateral heterogeneities in the upper mantle beneath south-east australia from seismic tomography, this volumeGoogle Scholar
  78. Revenaugh J, Jordan TH (1989) A study of mantle layering beneath the Western Pacific. J Geophys Res Solid Earth Planets 94(B5):5787–5813CrossRefGoogle Scholar
  79. Revenaugh J, Jordan TH (1991) Mantle layering from Scs reverberations 3. The upper mantle. J Geophys Res Solid Earth 96(B12):19781–19810CrossRefGoogle Scholar
  80. Richard G, Bercovici D, Karato SI (2006) Slab dehydration in the Earth’s mantle transition zone. Earth Planet Sci Lett 251(1–2):156–167CrossRefGoogle Scholar
  81. Ringwood AE (1962) A model for the upper mantle. J Geophys Res 67(2):857–867CrossRefGoogle Scholar
  82. Ringwood AE (1975) Composition and petrology of the Earth’s interior. McGraw-Hill, New York, pp 618Google Scholar
  83. Ringwood AE, Major A (1966) Synthesis of Mg2SiO4-Fe2SiO4 spinel solid solutions. Earth Planet Sci Lett 1(4):241–245CrossRefGoogle Scholar
  84. Ritsema J, Xu WB, Stixrude L, Lithgow-Bertelloni C (2009) Estimates of the transition zone temperature in a mechanically mixed upper mantle. Earth Planet Sci Lett 277(1–2):244–252CrossRefGoogle Scholar
  85. Ritsema J, Deuss A, van Heijst HJ, Woodhouse JH (2011) S40RTS: a degree-40 shear-velocity model for the mantle from new Rayleigh wave dispersion, teleseismic traveltime and normal-mode splitting function measurements. Geophys J Int 184(3):1223–1236CrossRefGoogle Scholar
  86. Rost S, Weber M (2001) A reflector at 200 km depth beneath the northwest Pacific. Geophys J Int 147(1):12–28CrossRefGoogle Scholar
  87. Rost S, Earle PS, Shearer PM, Frost DA, Selby ND (2015) Seismic detections of small-scale heterogeneities in the deep earth, this volumeGoogle Scholar
  88. Ryberg T, Wenzel F, Egorkin AV, Solodilov L (1998) Properties of the mantle transition zone in northern Eurasia. J Geophys Res Solid Earth 103(B1):811–822CrossRefGoogle Scholar
  89. Rychert CA, Schmerr N, Harmon N (2012) The Pacific lithosphere-asthenosphere boundary: Seismic imaging and anisotropic constraints from SS waveforms. Geochem Geophys Geosyst 13Google Scholar
  90. Schaeffer AJ, Lebedev S (2015) Global heterogeneity of the lithosphere and underlying mantle: a seismological appraisal based on multimode surface-wave dispersion analysis, shear-velocity tomography, and tectonic regionalization, this volumeGoogle Scholar
  91. Schmerr N, Garnero E (2006) Investigation of upper mantle discontinuity structure beneath the central Pacific using SS precursors, J Geophys Res Solid Earth 111(B8). 10.1029/2005JB004197
  92. Schmerr N, Thomas C (2011) Subducted lithosphere beneath the Kuriles from migration of PP precursors. Earth Planet Sci Lett 311(1–2):101–111CrossRefGoogle Scholar
  93. Schmerr N, Garnero E, McNamara AK (2010) Deep mantle plumes and convective upwelling beneath the Pacific Ocean. Earth Planet Sci Lett 294:143–151CrossRefGoogle Scholar
  94. Schmerr NC, Kelly BM, Thorne MS (2013) Broadband array observations of the 300 km seismic discontinuity. Geophys Res Lett 40(5):841–846CrossRefGoogle Scholar
  95. Shearer PM (1990) Seismic imaging of upper-mantle structure with new evidence for a 520-km discontinuity. Nature 344(6262):121–126CrossRefGoogle Scholar
  96. Shearer PM (1991) Imaging global body wave phases by stacking long-period seismograms. J Geophys Res Solid Earth 96(B12):20353–20320, 20364Google Scholar
  97. Shearer PM (1993) Global mapping of upper-mantle reflectors from long-period SS precursors. Geophys J Int 115(3):878–904CrossRefGoogle Scholar
  98. Shearer PM (2000) Upper mantle discontinuities. In: Karato S, Forte AM, Liebermann RC, Masters G, Stixrude L (eds) Earth’s deep interior: mineral physics and tomography from the atomic to the global scale. AGU, Washington D.C, pp 115–131Google Scholar
  99. Shearer PM, Masters TG (1992) Global mapping of topography on the 660-km discontinuity. Nature 355(6363):791–796CrossRefGoogle Scholar
  100. Shen X, Yuan X, Li X (2014) A ubiquitous low velocity layer at the base of the mantle transition zone. Geophys Res Lett n/a-n/aGoogle Scholar
  101. Sleep NH (1990) Hotspots and mantle plumes—some phenomenology. J Geophys Res Solid Earth Planets 95(B5):6715–6736CrossRefGoogle Scholar
  102. Smyth JR, Jacobsen SD (2006) Nominally anhydrous minerals and Earth’s deep water cycle. In: Jacobsen SD, Van der Lee S (eds) Earth’s deep water cycle. American Geophysical Union, Washington, DC, pp 1–11CrossRefGoogle Scholar
  103. Sobolev AV, Hofmann AW, Sobolev SV, Nikogosian IK (2005) An olivine-free mantle source of Hawaiian shield basalts. Nature 434(7033):590–597CrossRefGoogle Scholar
  104. Song TRA, Helmberger DV, Grand SP (2004) Low-velocity zone atop the 410-km seismic discontinuity in the northwestern United States. Nature 427(6974):530–533CrossRefGoogle Scholar
  105. Stixrude L (1997) Structure and sharpness of phase transitions and mantle discontinuities. J Geophys Res Solid Earth 102(B7):14835–14852CrossRefGoogle Scholar
  106. Stixrude L, Lithgow-Bertelloni C (2005) Thermodynamics of mantle minerals—I. Phys Prop Geophys J Int 162(2):610–632CrossRefGoogle Scholar
  107. Stixrude L, Lithgow-Bertelloni C (2007) Influence of phase transformations on lateral heterogeneity and dynamics in Earth’s mantle. Earth Planet Sci Lett 263(1–2):45–55CrossRefGoogle Scholar
  108. Thybo H, Nielsen L, Perchuc E (2003) Seismic scattering at the top of the mantle transition zone. Earth Planet Sci Lett 216(3):259–269CrossRefGoogle Scholar
  109. van Keken PE, Gable CW (1995) The interaction of a plume with a rheological boundary—a comparison between 2-dimensional and 3-dimensional models. J Geophys Res Solid Earth 100(B10):20291–20302CrossRefGoogle Scholar
  110. Wajeman N (1988) Detection of underside P-reflections at mantle discontinuities by stacking broad-band DATA. Geophys Res Lett 15(7):669–672CrossRefGoogle Scholar
  111. Weidner DJ, Wang YB (1998) Chemical- and Clapeyron-induced buoyancy at the 660 km discontinuity. J Geophys Res Solid Earth 103(B4):7431–7441CrossRefGoogle Scholar
  112. Weis D, Garcia MO, Rhodes JM, Jellinek M, Scoates JS (2011) Role of the deep mantle in generating the compositional asymmetry of the Hawaiian mantle plume. Nat Geosci 4(12):831CrossRefGoogle Scholar
  113. Wessel P, Smith WHF (1998) New, improved version of generic mapping tools released. EOS Trans AGU 79(47):579CrossRefGoogle Scholar
  114. Williams Q, Hemley RJ (2001) Hydrogen in the deep earth. Annu Rev Earth Planet Sci 29:365–418CrossRefGoogle Scholar
  115. Williams Q, Revenaugh J (2005) Ancient subduction, mantle eclogite, and the 300 km seismic discontinuity. Geology 33(1):1–4CrossRefGoogle Scholar
  116. Wolfe CJ, Solomon SC, Laske G, Collins JA, Detrick RS, Orcutt JA, Bercovici D, Hauri EH (2009) Mantle shear-wave velocity structure beneath the Hawaiian hot spot. Science 326(5958):1388–1390CrossRefGoogle Scholar
  117. Woodland AB (1998) The orthorhombic to high-P monoclinic phase transition in Mg-Fe pyroxenes: can it produce a seismic discontinuity? Geophys Res Lett 25(8):1241–1244CrossRefGoogle Scholar
  118. Woodland AB, Angel RJ (1997) Reversal of the orthoferrosilite-high-P clinoferrosilite transition, a phase diagram for FeSiO3 and implications for the mineralogy of the Earth’s upper mantle. Eur J Mineral 9(2):245–254CrossRefGoogle Scholar
  119. Xu WB, Lithgow-Bertelloni C, Stixrude L, Ritsema J (2008) The effect of bulk composition and temperature on mantle seismic structure. Earth Planet Sci Lett 275(1–2):70–79CrossRefGoogle Scholar
  120. Yu YG, Wentzcovitch RM, Angel RJ (2010) First principles study of thermodynamics and phase transition in low-pressure (P2(1)/c) and high-pressure (C2/c) clinoenstatite MgSiO3. J Geophys Res Solid Earth 115Google Scholar
  121. Zhang JS, Dera P, Bass JD (2012) A new high-pressure phase transition in natural Fe-bearing orthoenstatite. Am Mineral 97(7):1070–1074CrossRefGoogle Scholar
  122. Zhang Z, Lay T (1993) Investigation of upper mantle discontinuities near northwestern Pacific subduction zones using precursors to SSH. J Geophys Res Solid Earth 98(B3):4389–4405CrossRefGoogle Scholar
  123. Zhao DP (2004) Global tomographic images of mantle plumes and subducting slabs: insight into deep Earth dynamics. Phys Earth Planet Inter 146(1–2):3–34CrossRefGoogle Scholar
  124. Zhao L, Chevrot S (2003) SS-wave sensitivity to upper mantle structure: Implications for the mapping of transition zone discontinuity topographies. Geophys Res Lett 30(11):1590. doi:10.1029/2003GL017223 CrossRefGoogle Scholar
  125. Zheng YC, Lay T, Flanagan MP, Williams Q (2007) Pervasive seismic wave reflectivity and metasomatism of the Tonga mantle wedge. Science 316(5826):855–859CrossRefGoogle Scholar
  126. Zhong SJ, Watts AB (2002) Constraints on the dynamics of mantle plumes from uplift of the Hawaiian Islands. Earth Planet Sci Lett 203(1):105–116CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  1. 1.Department of GeologyUniversity of MarylandCollege ParkUSA

Personalised recommendations