Thermally Dominated Deep Mantle LLSVPs: A Review

  • D. R. DaviesEmail author
  • S. Goes
  • H. C. P. Lau
Part of the Springer Geophysics book series (SPRINGERGEOPHYS)


The two large low shear-wave velocity provinces (LLSVPs) that dominate lower-mantle structure may hold key information on Earth’s thermal and chemical evolution. It is generally accepted that these provinces are hotter than background mantle and are likely the main source of mantle plumes. Increasingly, it is also proposed that they hold a dense (primitive and/or recycled) compositional component. The principle evidence that LLSVPs may represent thermo-chemical ‘piles’ comes from seismic constraints, including the following: (i) their long-wavelength nature; (ii) sharp gradients in shear-wave velocity at their margins; (iii) non-Gaussian distributions of deep mantle shear-wave velocity anomalies; (iv) anti-correlated shear-wave and bulk-sound velocity anomalies (and elevated ratios between shear- and compressional-wave velocity anomalies); (v) anti-correlated shear-wave and density anomalies ; and (vi) 1-D/radial profiles of seismic velocity that deviate from those expected for an isochemical, well-mixed mantle. In addition, it has been proposed that hotspots and the reconstructed eruption sites of large igneous provinces correlate in location with LLSVP margins. In this paper, we review recent results which indicate that the majority of these constraints do not require thermo-chemical piles: they are equally well (or poorly) explained by thermal heterogeneity alone. Our analyses and conclusions are largely based on comparisons between imaged seismic structure and synthetic seismic structures from a set of thermal and thermo-chemical mantle convection models, which are constrained by ~300 Myr of plate motion histories. Modelled physical structure (temperature, pressure and composition) is converted into seismic velocities via a thermodynamic approach that accounts for elastic, anelastic and phase contributions and, subsequently, a tomographic resolution filter is applied to account for the damping and geographic bias inherent to seismic imaging . Our results indicate that, in terms of large-scale seismic structure and dynamics, these two provinces are predominantly thermal features and, accordingly, that chemical heterogeneity is largely a passive component of lowermost mantle dynamics.


Mantle dynamics Earth structure Seismic tomography Chemical heterogeneity LLSVP Mantle plumes 



DRD was partially funded by Fellowships from NERC (NE/H015329/1) and the ARC (FT140101262). Numerical simulations were undertaken on: (i) HECToR, the UK’s national high-performance computing service, which is provided by UoE HPCx Ltd, at the University of Edinburgh, Cray Inc., and NAG Ltd, and funded by the Office of Science and Technology through EPSRC’s High End Computing Program; and (ii) the NCI National Facility in Canberra, Australia , which is supported by the Australian Commonwealth Government. Authors would like to thank Lars Stixrude and Carolina Lithgow-Bertelloni for providing the lookup tables used in converting models from physical structure to seismic velocity; and Jeroen Ritsema for providing S40RTS’ resolution operator. Authors benefited from discussion with Huw Davies, Jeroen Ritsema, Hans-Peter Bunge, Bernhard Schuberth, Julie Prytulak, Brian Kennett, Ian Campbell and Geoff Davies. Authors would like to thank two anonymous reviewers for constructive comments on this manuscript, as well as Frederic Deschamps for editorial input.


  1. Alfè D, Gillan MJ, Price GD (2007) Temperature and composition of the Earth’s core. Contemp Phys 48:63–80. doi: 10.1080/00107510701529653 Google Scholar
  2. Allègre C, Manhes G, Lewin E (2001) Chemical composition of the Earth and the volatility control on planetary genetics. Earth Planet Sci Lett 185:49–69. doi: 10.1016/S0012-821X(00)00359-9 Google Scholar
  3. Allègre CJ, Brevart O, Dupre B, Minster JF (1980) Isotopic and chemical effects produced in a continuously differentiating convecting Earth mantle. Philos Trans R Soc Lond Ser A 297:447–477. doi: 10.1098/rsta.1980.0225
  4. Allègre CJ, Hofmann AW, O’Nions RK (1996) The Argon constraints on mantle structure. Geophys Res Lett 23:3555–3557. doi: 10.1029/96GL03373 Google Scholar
  5. Allègre CJ, Staudacher T, Sarda P (1987) Rare gas systematics: formation of the atmosphere, evolution and structure of the Earth’s mantle. Earth Planet Sci Lett 81:127–150. doi: 10.1016/0012821X(87)90151-8 Google Scholar
  6. Ammann MW, Brodholt JP, Wookey J, Dobson DP (2010) First-principles constraints on diffusion in lower-mantle minerals and a weak D’’ layer. Nature 465:251–267. doi: 10.1038/nature09052 Google Scholar
  7. Anderson DL (1982) Hotspots, polar wander, Mesozoic convection and the geoid. Nature 297:391–393. doi: 10.1038/297391a0 Google Scholar
  8. Austermann J, Kaye BT, Mitrovica JX, Huybers P (2014) A statistical analysis of the correlation between large igneous provinces and lower mantle seismic structure. Geophys J Int. doi: 10.1093/gji/ggt500
  9. Badro J, Fiquet G, Guyot F, Rueff J-P, Struzhkin VV, Vankó G, Monaco G (2003) Iron partitioning in Earth’s mantle: toward a deep lower mantle discontinuity. Science 300:789–791. doi: 10.1126/science.1081311 Google Scholar
  10. Bassin C, Laske G, Masters G (2000) The current limits of resolution for surface wave tomography in North America. EOS Trans AGU 81:0 F897Google Scholar
  11. Baumgardner JR (1985) Three-dimensional treatment of convective flow in the Earth’s mantle. J Stat Phys 39:501–511. doi: 10.1007/BF01008348 Google Scholar
  12. Becker TW, Boschi L (2002) A comparison of tomographic and geodynamic mantle models. Geochem Geophys Geosys 3:0 2001GC000168. doi:10.129/2001GC000168Google Scholar
  13. Bijwaard H, Spakman W (2000) Non-linear global P-wave tomography by iterated linearized inversion. Geophys J Int 141:71–82. doi: 10.1046/j.1365-246X.2000.00053.x Google Scholar
  14. Boehler R (2000) High-pressure experiments and the phase diagram of lower mantle and core materials. Rev Geophys 38:221–245. doi: 10.1029/1998RG000053 Google Scholar
  15. Bower DJ, Gurnis M, Seton M (2013) Lower mantle structure from paleogeographically constrained dynamic Earth models. Geochem Geophys Geosys 14:44–63. doi: 10.1029/2012GC004267 Google Scholar
  16. Boyet M, Carlson RW (2005) 142Nd evidence for early (4.53 Ga) global differentiation of the silicate Earth. Science 309:576–581Google Scholar
  17. Boyet M, Carlson RW (2006) A new geochemical model for the Earth’s mantle inferred from 146Sm/142Nd systematics. Earth Planet Sci Lett 250:254–268Google Scholar
  18. Brandenburg JP, Hauri EH, van Keken PE, Ballentine CJ (2008) A multiple-system study of the geochemical evolution of the mantle with force-balanced plates and thermochemical effects. Earth Planet Sci Lett 276:1–13. doi: 10.1016/j.epsl.2008.08.027 Google Scholar
  19. Brandenburg JP, van Keken PE (2007) Deep storage of oceanic crust in a vigorously convecting mantle. J Geophys Res 112:0 B06403. doi: 10.1029/2006JB004813
  20. Brodholt JP, Hellfrich G, Trampert J (2007) Chemical versus thermal heterogeneity in the lower mantle: the most likely role of anelasticity. Earth Planet Sci Lett 262:429–437. doi: 10.1016/j.epsl.2007.07.054 Google Scholar
  21. Brown JM, Shankland TJ (1981) Thermodynamic parameters in the Earth as determined from seismic profiles. Geophys J R Astron Soc 66:579–596Google Scholar
  22. Buffett BA (2002) Estimates of heat flow in the deep mantle based on the power requirements for the geodynamo. Geophys Res Lett 29:4. doi: 10.1029/2001GL014649
  23. Bull AL, McNamara AK, Ritsema J (2009) Synthetic tomography of plume clusters and thermochemical piles. Earth Planet Sci Lett 278:152–156. doi: 10.1016/j.epsl.2008.11.018 Google Scholar
  24. Bunge H-P (2005) Low plume excess temperature and high core heat flux inferred from non-adiabatic geotherms in internally heated mantle circulation models. Phys Earth Planet Int 153:3–10. doi: 10.1016/j.pepi.2005.03.017 Google Scholar
  25. Bunge H-P, Richards MA, Baumgardner JR (1997) A sensitivity study of 3-D-spherical mantle convection at 108 Rayleigh number: effects of depth-dependent viscosity, heating mode and an endothermic phase change. J Geophys Res 102:11991–12007. doi: 10.1029/96JB03806 Google Scholar
  26. Bunge HP, Richards MA, Baumgardner JR (2002) Mantle circulation models with sequential data-assimilation: inferring present-day mantle structure from plate motion histories. Philos Trans R Soc Lond Set A 360:2545–2567. doi: 10.1098/rsta.2002.1080
  27. Burke K, Steinberger B, Torsvik TH, Smethurst MA (2008) Plume generation zones at the margins of large low shear-wave velocity provinces on the core–mantle–boundary. Earth Planet Sci Lett 265:49–60. doi: 10.1016/j.epsl.2007.09.042 Google Scholar
  28. Cammarano F, Goes S, Deuss A, Giardini D (2005) Is a pyrolitic adiabatic mantle compatible with seismic data? Earth Planet Sci Lett 232:227–243Google Scholar
  29. Cammarano F, Marquardt H, Speziale S, Tackley PJ (2010) Role of iron-spin transition in ferropericlase on seismic interpretation: a broad thermochemical transition in the mid mantle? Geophys Res Lett 37. doi: 10.1029/2009GL041583
  30. Cammarano F, Romanowicz B (2007) Insights into the nature of the transition zone from physically constrained inversion of long period seismic data. PNAS-High Press Geosci 104:9139–9144Google Scholar
  31. Campbell IH, Griffiths RW (1992) The changing nature of mantle hotspots through time: implications for the geochemical evolution of the mantle. J Geology 100:497–523Google Scholar
  32. Campbell IH, O’Neill HC (2012) Evidence against a chondritic earth. Nature 483:553–558. doi: 10.1038/nature10901 Google Scholar
  33. Caro G (2015) Chemical geodynamics in a non-chondritic Earth. In: Khan A, Deschamps F (eds)The Earth's Heterogeneous Mantle, Springer, Cham (this Volume)Google Scholar
  34. Caro G, Bourdon B (2010) Non-chondritic Sm/Nd ratio in the terrestrial planets: consequences for the geochemical evolution of the mantle-crust system. Geochim Cosmochim Acta 74:3333–3349Google Scholar
  35. Christensen UR, Hofmann AW (1994) Segregation of subducted oceanic crust in the mantle. J Geophys Res 99:19867–19884Google Scholar
  36. Cobden L, Goes S, Cammarano F, Connolly JAD (2008) Thermochemical interpretation of one-dimensional seismic reference models for the upper mantle: evidence for bias due to heterogeneity. Geophys J Int 175:627–648. doi: 10.1111/j.1365-246X.2008.03903.x Google Scholar
  37. Cobden L, Thomas C, Trampert J (2015) Seismic detection of post-perovskite inside the earth. In: Khan A, Deschamps F (eds) The earth's heterogeneous mantle, Springer, Cham. (this Volume)Google Scholar
  38. Cobden L, Goes S, Ravenna M, Styles E, Cammarano F, Gallagher K, Connolly JAD (2009) Thermochemical interpretation of 1-D seismic data for the lower mantle: the significance of non-adiabatic thermal gradients and compositional heterogeneity. J Geophys Res 114:B11309. doi: 10.1029/2008JB006262
  39. Coltice N, Ricard Y (1999) Geochemical observations and one layer mantle convection. Earth Planet Sci Lett 174:125–137Google Scholar
  40. Crotwell HP, Owens TJ, Ritsema J (1999) The TauP toolkit: flexible seismic travel-time and ray-path utilities. Seismol Res Lett 70:154–160. doi: 10.1785/gssrl.70.2.154 Google Scholar
  41. da Silva CRS, Wentzcovitch RM, Patel A, Price GD, Karato SI (2000) The composition and geotherm of the lower mantle: constraints from the elasticity of silicate perovskite. Earth Planet Sci Lett 118:103–109. doi: 10.1016/S0031-9201(99)00133-8 Google Scholar
  42. Davaille A (1999) Simultaneous generation of hotspots and superswells by convection in a heterogeneous planetary mantle. Nature 402:756–760Google Scholar
  43. Davies GF (1999) Dynamic Earth: plates, plumes and mantle convection. Cambridge University Press, Cambridge. ISBN 9780521599337Google Scholar
  44. Davies GF (2009) Reconciling the geophysical and geochemical mantles: plume flows, heterogeneities and disequilibrium. Geochem Geophy Geosyst 10:Q10008. doi: 10.1029/2009GC002634
  45. Davies GF (2011) Dynamical geochemistry of the mantle. Solid Earth 2:159–189. doi: 10.5194/se-2-159-2011 Google Scholar
  46. Davies DR, Davies JH (2009) Thermally–driven mantle plumes reconcile multiple hotspot observations. Earth Planet Sci Lett 278:50–54. doi: 10.1016/j.epsl.2008.11.027 Google Scholar
  47. Davies DR, Davies JH, Bollada PC, Hassan O, Morgan K, Nithiarasu P (2013) A hierarchical mesh refinement technique for global 3D spherical mantle convection modelling. Geosci Mod Dev 6:1095–1107. doi: 10.5194/gmd-6-1095-2013 Google Scholar
  48. Davies DR, Goes S, Davies JH, Schuberth BSA, Bunge H-P, Ritsema J (2012) Reconciling dynamic and seismic models of Earth’s lower mantle: the dominant role of thermal heterogeneity. Earth Planet Sci Lett 353–354:253–269. doi: 10.1016/j.epsl.2012.08.016 Google Scholar
  49. Davies DR, Goes S, Sambridge M (2015) On the relationship between volcanic hotspot locations, the reconstructed eruption sites of large igneous provinces and deep mantle seismic structure. Earth Planet Sci Lett 411:121–130Google Scholar
  50. Davies JH, Bunge HP (2001) Seismically ‘fast’ geodynamic mantle models. Geophys Res Lett 28:73–76Google Scholar
  51. de Koker N (2010) Thermal conductivity of MgO at high pressure: implications for the D” region. Earth Planet Sci Lett 292:392–398Google Scholar
  52. Deschamps F, Cobden L, Tackley PJ (2012) The primitive nature of large low shear-wave velocity provinces. Earth Planet Sci Lett 349–350:198–208. doi: 10.1016/j.epsl.2012.07.012 Google Scholar
  53. Deschamps F, Kaminski E, Tackley PJ (2011) A deep mantle origin for the primitive signature of ocean island basalt. Nature Geosci 4:879–882. doi: 10.1038/NGEO1295 Google Scholar
  54. Deschamps F, Li Y, Tackley PJ (2015) Large-scale thermo-chemical structure of 1 the deep mantle: observations and models. In: Khan A, Deschamps F (eds) The Earth's Heterogeneous Mantle, Springer, Cham (this Volume)Google Scholar
  55. Deschamps F, Tackley PJ (2008) Exploring the model space of thermo-chemical convection: (i) principles and influence of the rheological parameters. Phys Earth Planet Int 171:357–373Google Scholar
  56. Deschamps F, Tackley PJ (2009) Searching for models of thermo-chemical convection that explain probabilistic tomography: (ii) influence of physical and compositional parameters. Phys Earth Planet Int 176:1–18Google Scholar
  57. Deschamps F, Trampert J (2004) Towards a lower mantle reference temperature and composition. Earth Planet Sci Lett 222:161–175Google Scholar
  58. Duffy TS, Anderson DL (1989) Seismic velocities in mantle minerals and the mineralogy of the upper mantle. J Geophys Res 940(B2):1895–1912. doi: 10.1029/JB094iB02p01895
  59. Duncan RA, Richards MA (1991) Hotspots, mantle plumes, flood basalts and true polar wander. Rev Geophys 29:31–50Google Scholar
  60. Dziewonski AM, Anderson DL (1981) Preliminary reference Earth model. Phys Earth Planet Int 25:297–356Google Scholar
  61. Dziewonski AM, Hager BH, O’Connell RJ (1977) Large-scale heterogeneities in the lower mantle. J Geophys Res 82:239–255Google Scholar
  62. Dziewonski AM, Lekic V, Romanowicz BA (2010) Mantle anchor structure: an argument for bottom up tectonics. Earth Planet Sci Lett 299:69–79Google Scholar
  63. Forte AM, Mitrovica JX (2001) Deep-mantle high-viscosity flow and thermochemical structure inferred from seismic and geodynamic data. Nature 410:1049–1056Google Scholar
  64. Fukao Y, Obayashi M (2013) Subducted slabs stagnant above, penetrating through and trapped below the 660 km discontinuity. J Geophys Res 118:5920–5938. doi: 10.1002/2013JB010466 Google Scholar
  65. Garel F, Goes S, Davies DR, Davies JH, Kramer SC, Wilson CR (2014) Interaction of subducted slabs with the mantle transition-zone: a regime diagram from 2-D thermo-mechanical models with a mobile trench and an overriding plate. Geochem Geophys Geosys 15. doi: 10.1002/2014GC005257
  66. Garnero EJ, McNamara AK (2008) Structure and dynamics of Earth’s lower mantle. Science 320:626–628Google Scholar
  67. Glatzmaier GA, Roberts PH (1995) A 3-D self–consistent computer simulation of a geomagnetic field reversal. Nature 377:203–209Google Scholar
  68. Goes S, Cammarano F, Hansen U (2004) Synthetic seismic signature of thermal mantle plumes. Earth Planet Sci Lett 218:403–419. doi: 10.1016/S0012-821X(03)00680-0 Google Scholar
  69. Grand S, van der Hilst RD, Widiyantoro S (1997) Global seismic tomography: a snapshot of mantle convection in the Earth. GSA Today 7:1–7Google Scholar
  70. Gubbins D, Alfè D, Masters G, Price GD, Gillan M (2004) Gross thermodynamics of two–component core convection. Geophys J Int 157:1407–1414. doi: 10.1111/j.1365-246X.2004.02219.x Google Scholar
  71. Gurnis M, Mitrovica JX, Ritsema J, van Heijst HJ (2000) Constraining mantle density structure using geological evidence of surface uplift rates: the case of the African superplume. Geochem Geophys Geosys 1:1999GC000035Google Scholar
  72. Hager BH, Clayton RW, Richards MA, Comer RP, Dziewonski AM (1985) Lower mantle heterogeneity, dynamic topography and the geoid. Nature 313:541–545. doi: 10.1038/313541a0 Google Scholar
  73. Hanan BB, Graham DW (1996) Lead and helium isotopic evidence from oceanic basalts for a common deep source of mantle plumes. Science 272:991–995. doi: 10.1126/science.272.5264.991 Google Scholar
  74. He Y, Wen L (2009) Structural features and shear–velocity structure of the ‘Pacific anomaly’. J Geophys Res 114:B02309. doi: 10.1029/2008JB005814
  75. Hernlund JW, Houser C (2008) On the statistical distribution of seismic velocities in Earth’s deep mantle. Earth Planet Sci Lett 265:423–437. doi: 10.1016/j.epsl.2007.10.042 Google Scholar
  76. Hernlund JW, Thomas C, Tackley PJ (2005) A doubling of the post–perovskite phase boundary and structure of the Earth’s lowermost mantle. Nature 434:882–886Google Scholar
  77. Hofmann AW (1997) Mantle geochemistry: the message from oceanic volcanism. Nature 385:219–229. doi: 10.1038/385219a0 Google Scholar
  78. Hofmann AW (2003) Sampling mantle heterogeneity through oceanic basalts: isotopes and trace elements. Treatise Geochem 2:61–101Google Scholar
  79. Houser C, Masters G, Shearer P, Laske G (2008) Shear and compressional velocity models of the mantle from cluster analysis of long-period waveforms. Geophys J Int 174:195–212. doi: 10.1111/j.1365-246X.2008.03763.x Google Scholar
  80. Huang J, Davies GF (2007a) Stirring in three-dimensional mantle convection models and implications for geochemistry: heavy tracers. Geochem Geophys Geosyst 8:Q07004. doi: 10.1029/2007GC001621
  81. Huang J, Davies GF (2007b) Stirring in three-dimensional mantle convection models and implications for geochemistry: passive tracers. Geochem Geophys Geosyst 8:Q03017. doi: 10.1029/2006GC001312
  82. Hunt SA, Davies DR, Walker AM, McCormack RJ, Wills AS, Dobson DP, Li L (2012) On the increase in thermal diffusivity caused by the perovskite to post-perovskite phase transition and its implications for mantle dynamics. Earth Planet Sci Lett 319:96–103. doi: 10.1016/j.epsl.2011.12.009 Google Scholar
  83. Ishii M, Tromp J (1999) Normal-mode and free-air gravity constraints on lateral variations in velocity and density of Earth’s mantle. Science 285:1231–1236. doi: 10.1126/science.285.5431.1231 Google Scholar
  84. Jackson I (1998) Elasticity, composition and temperature of the Earth’s lower mantle: a reappraisal. Geophys J Int 134:291–311. doi: 10.1046/j.1365-246x.1998.00560.x Google Scholar
  85. Jackson MG, Carlson R (2011) An ancient recipe for flood basalt genesis. Nature 476:316–319. doi: 10.1038/nature10326 Google Scholar
  86. Jackson MH, Carlson R, Kurz MD, Kempton PD, Francis D, Blusztajn J (2010) Evidence for the survival or the oldest terrestrial mantle reservoir. Nature 466:853–856Google Scholar
  87. Javoy M, Kaminski E, Guyot F, Andrault D, Sanloup C, Moreira M, Labrosse S, Jambon A, Agrinier P, Davaille A, Jaupart C (2010) The chemical composition of the Earth: enstatite chondrite models. Earth Planet Sci Lett 2930(3–4):259–268. doi:  10.1016/j.epsl.2010.02.033
  88. Jeanloz R, Morris S (1987) Is the mantle geotherm sub–adiabatic? Geophys Res Lett 143:335–338Google Scholar
  89. Jellinek AM, Manga M (2002) The influence of a chemical boundary layer on the fixity, spacing and lifetime of mantle plumes. Nature 418:760–763. doi: 10.1038/nature00979 Google Scholar
  90. Karato S-I (1993) The importance of anelasticity in the interpretation of seismic tomography. Geophys Res Lett 20:1623–1626Google Scholar
  91. Karato S-I (2008) Deformation of Earth materials: an introduction to the rheology of solid Earth. Cambridge University Press, CambridgeGoogle Scholar
  92. Karato S-I, Karki BB (2001) Origin of lateral variation of seismic wave velocities and density in the deep mantle. J Geophys Res 106:21771–21783Google Scholar
  93. Kellogg LH, Hager BH, van der Hilst RD (1999) Compositional stratification in the deep mantle. Science 283:1881–1884. doi: 10.1126/science.283.5409.1881 Google Scholar
  94. Kennett BLN, Engdahl R, Buland R (1995) Constraints on seismic velocities in the Earth from travel–times. Geophys J Int 122:108–124. doi: 10.1111/j.1365-246X.1995.tb03540.x Google Scholar
  95. Kennett BLN, Widiyantoro S, van der Hilst RD (1998) Joint seismic tomography for bulk sound and shear wave speed in the Earth’s mantle. J Geophys Res 103:12469–12493Google Scholar
  96. Khan A, Connolly JAD, Taylor SR (2008) Inversion of seismic and geodetic data for the major element chemistry and temperature of the Earth’s mantle. J Geophys Res 113:B09308. doi: 10.1029/2007JB005239
  97. Labrosse S, Hernlund JW, Coltice N (2007) A crystallizing dense magma ocean at the base of Earth’s mantle. Nature 450:866–869. doi: 10.1038/nature06355 Google Scholar
  98. Lay T, Hernlund J, Buffett BA (2008) Core–mantle–boundary heat flow. Nature Geosci 1:25–32. doi: 10.1038/ngeo.2007.44 Google Scholar
  99. Leng W, Zhong S (2008) Controls on plume heat flux and plume excess temperature. J Geophys Res 113. doi: 10.1029/2007JB005155
  100. Li C, van der Hilst RD, Engdahl ER, Burdick S (2008) A new global model for P-wave speed variations in Earth’s mantle. Geochem Geophys Geosys 5. doi: 10.1029/2007GC001806
  101. Lyubetskaya T, Korenaga J (2007) Chemical composition of Earth’s primitive mantle and its variance: 2. implications for global geodynamics. J Geophys Res 112:B03212. doi: 10.1029/2005JB004224
  102. Malcolm AE, Trampert J (2011) Tomographic errors from wave front healing: more than just a fast bias. Geophys J Int 185:385–402. doi: 10.1111/j.1365-246X.2011.04945.x Google Scholar
  103. Masters G, Gubbins D (2003) On the resolution of density within the Earth. Phys Earth Planet Int 140:159–167Google Scholar
  104. Masters G, Laske G, Bolton H, Dziewonski AM (2000) The relative behavior of shear-wave velocity, bulk sound speed, and compressional velocity in the mantle: implications for chemical and thermal structure. AGU Monogr Earth’s Deep Inter 171:63–87Google Scholar
  105. Matas J, Bass J, Ricard Y, Mattern E, Bukowinski MST (2007) On the bulk composition of the lower mantle: predictions and limitations from generalized inversion of radial seismic profiles. Geophys J Int 170:764–780. doi: 10.1111/j.1365-246X.2007.03454.x Google Scholar
  106. Matas J, Bukowinski MST (2007) On the anelastic contribution to the temperature dependence of lower mantle seismic velocities. Earth Planet Sci Lett 259:51–65. doi: 10.1016/j.epsl.2007.04.028 Google Scholar
  107. McDonough WF, Sun S-S (1995) The composition of the Earth. Chem Geol 120:223–253Google Scholar
  108. McNamara AK, Zhong S (2004) Thermochemical structures within a spherical mantle. J Geophys Res 109:B07402. doi: 10.1029/2003JB002847
  109. McNamara AK, Zhong S (2005) Thermochemical structures beneath Africa and the Pacific Ocean. Nature 437:1136–1139. doi: 10.1038/nature04066 Google Scholar
  110. Montelli R, Nolet G, Masters G, Dahlen FA, Hung S-H (2004) Global P and PP traveltime tomography: rays versus waves. Geophys J Int 158:630–654Google Scholar
  111. Mosca I, Cobden L, Deuss A, Ritsema J, Trampert J (2012) Seismic and mineralogical structures of the lower mantle from probabilistic tomography. J Geophys Res 117:B06304. doi: 10.1029/2011JB008851
  112. Nakagawa T, Tackley PJ (2004) Effects of a perovskite–post perovskite phase change near core–mantle–boundary in compressible mantle convection. Geophys Res Lett 31:L16611. doi: 10.1029/2004GL020648
  113. Nakagawa T, Tackley PJ, Deschamps F, Connolly JAD (2010) The influence of MORB and Harzburgite composition on thermo-chemical mantle convection in a 3D spherical shell with self-consistently calculated mineral physics. Earth Planet Sci Lett 296:403–412. doi: 10.1016/j.epsl.2010.05.026 Google Scholar
  114. Ni SD, Tan E, Gurnis M, Helmberger DV (2002) Sharp sides to the African superplume. Science 296:1850–1852. doi: 10.1126/science.1070698 Google Scholar
  115. Olson P, Deguen R, Hinnov LA, Zhong SJ (2013) Controls on geomagnetic reversals and core evolution by mantle convection in the phanerozoic. Phys Earth Planet Int 214:87–103. doi: 10.1016/j.pepi.2012.10.003 Google Scholar
  116. Ranalli S (1995) Rheology of the Earth. Chapman & Hall, LondonGoogle Scholar
  117. Rapp RP, Irifune T, Shimizu N, Nishiyama N, Norman MD, Inoue T (2008) Subduction recycling of continental sediments and the origin of geochemically enriched reservoirs in the deep mantle. Earth Planet Sci Lett 271:14–23. doi: 10.1016/j.epsl.2008.02.028 Google Scholar
  118. Ricard Y, Richards MA, Lithgow-Bertelloni C, LeStunff Y (1993) A geodynamic model of mantle mass heterogeneities. J Geophys Res 98:21895–21909Google Scholar
  119. Ricard Y, Chambat F, Lithgow-Bertelloni C (2006) Gravity observations and 3-D structure of the Earth. CR Geosci 338:992–1001Google Scholar
  120. Richards MA, Engebretson DC (1992) Large-scale mantle convection and the history of subduction. Nature 355:437–440. doi: 10.1029/2007JB005155 Google Scholar
  121. Ritsema J, Ni S, Helmberger DV, Crotwell HP (1998) Evidence for strong shear-wave velocity reductions and velocity gradients in the lower mantle beneath Africa. Geophys Res Lett 25:4245–4248Google Scholar
  122. Ritsema J, van Heijst HJ (2002) Constraints on the correlation of P- and S-wave velocity heterogeneity in the mantle from P, PP, PPP and PKPab traveltimes. Geophys J Int 149:482–489. doi: 10.1046/j.1365-246X.2002.01631.x Google Scholar
  123. Ritsema J, McNamara AK, Bull A (2007) Tomographic filtering of geodynamic models: implications for model interpretation and large-scale mantle structure. J Geophys Res 112. doi: 10.1029/2006JB004566
  124. Ritsema J, van Heijst HJ, Deuss A, Woodhouse JH (2011) S40RTS: a degree–40 shear-wave velocity model for the mantle from new Rayleigh wave dispersion, teleseismic traveltimes, and normal–mode splitting function measurements. Geophys J Int 184:1223–1236. doi: 10.1111/j.1365-246X.2010.04884.x Google Scholar
  125. Robertson GS, Woodhouse JH (1995) Evidence for proportionality of P and S heterogeneity in the lower mantle. Geophys J Int 123:85–116Google Scholar
  126. Romanowicz B (2001) Can we resolve 3-D density heterogeneity in the lower mantle? Geophys Res Lett 28:1107–1110Google Scholar
  127. Saltzer RL, van der Hilst RD, Karason H (2001) Comparing P and S wave heterogeneity in the mantle. Geophys Res Lett 28:1335–1338Google Scholar
  128. Schaeffer N, Manga M (2001) Interaction of rising and sinking mantle plumes. Geophys Res Lett 28:455–458Google Scholar
  129. Schuberth BSA, Bunge H-P, Ritsema J (2009a) Tomographic filtering of high-resolution mantle circulation models: can seismic heterogeneity be explained by temperature alone? Geochem Geophys Geosyst 10:Q05W03. doi: 10.1029/2009GC002401
  130. Schuberth BSA, Bunge H-P, Steinle-Neumann G, Moder C, Oeser J (2009b) Thermal versus elastic heterogeneity in high-resolution mantle circulation models with pyrolite composition: high plume excess temperatures in the lowermost mantle. Geochem Geophys Geosyst 10:Q01W01. doi: 10.1029/2008GC002235
  131. Schuberth BSA, Zaroli C, Nolet G (2012) Synthetic seismograms for a synthetic Earth: long-period P- and S-wave traveltime variations can be explained by temperature alone. Geophys J Int 200:1393–1412. doi: 10.1111/j.1365-246X.2011.05333.x Google Scholar
  132. Shephard GE, Bunge H-P, Schuberth BSA, Muller RD, Talsma AS, Moder C, Landgrebe TCW (2012) Testing absolute plate reference frames and the implications for the generation of geodynamic mantle heterogeneity structure. Earth Planet Sci Lett 317:204–217. doi: 10.1016/j.epsl.2011.11.027 Google Scholar
  133. Simmons NA, Forte AM, Boschi L, Grand SP (2010) GyPSuM: a joint tomographic model of mantle density and seismic wave speeds. J Geophys Res 115. doi: 10.1029/2010JB007631
  134. Simmons NA, Myers SC, Johannesson G (2011) Global-scale p wave tomography optimized for prediction of teleseismic and regional traveltime for middle east events: 2. tomographic inversion. J Geophys Res 116:B04305. doi: 10.1029/2010JB007969
  135. Sramek O, McDonough WF, Kite ES, Lekic V, Dye ST, Zhong S (2013) Geophysical and geochemical constraints on geoneutrino fluxes from Earth’s mantle. Earth Planet Sci Lett 361:356–366Google Scholar
  136. Stampfli GM, Borel GD (2002) A plate tectonic model for the Paleozoic and Mesozoic constrained by dynamic plate boundaries and restored synthetic oceanic isochrons. Earth Planet Sci Lett 196:17–33Google Scholar
  137. Stampfli GM, Hochard C (2009) Plate tectonics of the Alpine realm. Geol Soc London Spec Publ 327:89–111Google Scholar
  138. Stegman DR, Jellinek AM, Zatman SA, Baumgardner JR, Richards MA (2003) An early lunar core dynamo driven by thermochemical mantle convection. Nature 421:143–146Google Scholar
  139. Steinberger B (2000) Plumes in a convecting mantle: models and observations for individual hotspots. J Geophys Res 105:11127–11152Google Scholar
  140. Steinberger B, Torsvik TH (2012) A geodynamic model of plumes from the margins of large low shear-wave velocity provinces. Geochem Geophys Geosyst 13:Q01W09. doi: 10.1029/2011GC003808
  141. Stixrude L, Lithgow-Bertelloni C (2005) Thermodynamics of mantle minerals—i. physical properties. Geophys J Int 162:610–632. doi: 10.1111/j.1365-246X.2005.02642.x Google Scholar
  142. Stixrude L, Lithgow-Bertelloni C (2007) Influence of phase transformations on lateral heterogeneity and dynamics in Earth’s mantle. Earth Planet Sci Lett 263:45–55. doi: 10.1016/j.epsl.2007.08.027 Google Scholar
  143. Stixrude L, Lithgow-Bertelloni C (2011) Thermodynamics of mantle minerals—ii. phase equilibria. Geophys J Int 184:1180–1213. doi: 10.1111/j.1365-246X.2010.04890.x Google Scholar
  144. Styles E, Davies DR, Goes S (2011) Mapping spherical seismic into physical structure: biases from 3-D phase-transition and thermal boundary-layer heterogeneity. Geophys J Int 184:1371–1378. doi: 10.1111/j.1365-246X.2010.04914.x Google Scholar
  145. Su WJ, Dziewonski AM (1997) Simultaneous inversion for 3-D variations in shear and bulk velocity in the mantle. Phys Earth Planet Int 100:135–156Google Scholar
  146. Tackley PJ (1998) Three–dimensional simulation of mantle convection with a thermo–chemical boundary layer: D’’? In: Gurnis M, Wysession ME, Knittle E, Buffet BA (eds) The core–mantle–boundary region. AGU, Washington DC, pp 231–253Google Scholar
  147. Tackley PJ (2002) Strong heterogeneity caused by deep mantle layering. Geochem Geophys Geosyst 3:1024. doi: 10.1029/2001GC000167 Google Scholar
  148. Tackley PJ (2007) Mantle geochemical geodynamics. Treatise Geophys 7: 437–505Google Scholar
  149. Tackley PJ, King SD (2003) Testing the tracer ratio method for modelling active compositional fields in mantle convection simulations. Geochem Geophys Geosyst 4:8302. doi: 10.1029/2001GC000214
  150. Tackley PJ, Xie S, Nakagawa T, Hernlund JW (2005). Numerical and laboratory studies of mantle convection: philosophy, accomplishments and thermo-chemical structure and evolution. In: Earth’s deep mantle: structure, composition, and evolution, vol 160. Geophysical Monograph Series, AGU, Washington DC, pp 83–99. doi: 10.1029/1160GM1007
  151. Tan E, Gurnis M, Han LJ (2002) Slabs in the lower mantle and their modulation of plume formation. Geochem Geophys Geosyst 3:1067. doi: 10.1029/2001GC000238 Google Scholar
  152. Tan E, Leng W, Zhong S, Gurins M (2011) On the location of plumes and mobility of thermo–chemical structures with high bulk modulus in the 3-D compressible mantle. Geochem Geophys Geosyst 12:Q07005. doi: 10.1029/2011GC003665
  153. Thorne MS, Garnero EJ, Grand SP (2004) Geographic correlation between hotspots and deep mantle lateral shear–wave velocity gradients. Phys Earth Planet Int 146:47–63. doi: 10.1016/j.pepi.2003.09.026 Google Scholar
  154. To A, Romanowicz B, Capdeville Y, Takeuchi N (2005) 3-D effects of sharp boundaries at the borders of the African and Pacific superplumes: observation and modeling. Earth Planet Sci Lett 233:137–153. doi: 10.1016/j.epsl.2005.01.037 Google Scholar
  155. Torsvik TH, Smethurst MA, Burke K, Steinberger B (2006) Large igneous provinces generated from the margins of the large low-velocity provinces in the deep mantle. Geophys J Int 167:1447–1460. doi: 10.1111/j.1365-246X.2006.03158.x Google Scholar
  156. Torsvik TH, Muller RD, van der Voo R, Steinberger B, Gaina C (2008a) Global plate motion frames: towards a unified model. Rev Geophys 46:1–44. doi: 10.1029/2007RG000227
  157. Torsvik TH, Smethurst MA, Burke K, Steinberger B (2008b) Long term stability in deep mantle structure: evidence from the ~300 Ma Skagerrak-Centered Large Igneous Province (the SCLIP). Earth Planet Sci Lett 267:444–452. doi: 10.1016/j.epsl.2007.12.004
  158. Torsvik TH, Burke K, Steinberger B, Webb SJ, Ashwal LD (2010) Diamonds sampled by plumes from the core-mantle-boundary. Nature 466:352–358. doi: 10.1038/nature09216 Google Scholar
  159. Tosi N, Yuen DA, Cadek O (2010) Dynamical consequences in the lower mantle with the post-perovskite phase change and strongly depth–dependent thermodynamic and transport properties. Earth Planet Sci Lett 298:229–243. doi: 10.1016/j.epsl.2010.08.001 Google Scholar
  160. Trampert J, Deschamps F, Resovsky J, Yuen D (2004) Probabilistic tomography maps chemical heterogeneities throughout the lower mantle. Science 306:853–856. doi: 10.1126/science.1101996 Google Scholar
  161. Trampert J, Vacher P, Vlaar N (2001) Sensitivities of seismic velocities to temperature, pressure and composition in the lower mantle. Phys Earth Planet Int 124:255–267. doi: 10.1016/S0031-9201(01)00201-1 Google Scholar
  162. Trieloff M, Kunz J, Clague DA, Harrison D, Allègre CJ (2000) The nature of pristine noble gases in mantle plumes. Science 288:1036–1038. doi: 10.1126/science.288.5468.1036 Google Scholar
  163. van der Hilst RD, de Hoop MV, Wang P, Shim SH, Ma P, Tenorio L (2007) Seismostratigraphy and thermal structure of Earth’s core–mantle–boundary region. Science 315:1813–1817. doi: 10.1126/science.1137867 Google Scholar
  164. van der Hilst RD, Widiyantoro S, Engdahl ER (1997) Evidence for deep mantle circulation from global tomography. Nature 386:578–584. doi: 10.1038/386578a0 Google Scholar
  165. Walter MJ, Nakamura E, Tronnes RG, Frost DJ (2004) Experimental constraints on crystallisation differentiation in a deep magma ocean. Geochim Cosmo Acta 68:4267–4284. doi: 10.1016/j.gca.2004.03.014 Google Scholar
  166. Wang Y, Wen L (2004) Mapping the geometry and geographic distribution of a very-low velocity province at the base of the Earth’s mantle. J Geophys Res 109:B10305. doi: 10.1029/2003JB002674
  167. Wang Y, Wen L (2007) Geometry and P and S velocity structure of the ‘African anomaly’. J Geophys Res 112. doi: 10.1029/2006JB004483
  168. Wasserburg GJ, De Paolo DJ (1979) Models of Earth structure inferred from neodymium and strontium isotopic abundances. Proc Natl Acad Sci USA 76:3594–3598Google Scholar
  169. Wolstencroft M, Davies JH, Davies DR (2009) Nusselt–rayleigh number scaling for spherical shell earth mantle simulation up to a rayleigh number of 109. Phys Earth Planet Inter 176:132–141Google Scholar
  170. Woodhouse J, Dziewonski A (1989) Seismic modeling of the Earth’s large scale 3-D structure. Phil Trans Roy Soc 328:291. doi: 10.1098/rsta.1989.0037
  171. Wookey J, Stackhouse S, Kendall J-M, Brodholt J, Price GD (2005) Efficacy of the post-perovskite phase as an explanation for lowermost-mantle seismic properties. Nature 438:1004–1007. doi: 10.1038/nature04345 Google Scholar
  172. Xie S, Tackley PJ (2004) Evolution of helium and argon isotopes in a convecting mantle. Phys Earth Planet Int 146:417–439Google Scholar
  173. Xu W, Lithgow-Bertelloni C, Stixrude L, Ritsema J (2008) The effect of bulk composition and temperature on mantle seismic structure. Earth Planet Sci Lett 275:70–79Google Scholar
  174. Zhang N, Zhong SJ (2011) Heat fluxes at the Earth’s surface and core–mantle boundary since Pangea formation and their implications for the geomagnetic superchrons. Earth Planet Sci Lett 306:205–216. doi: 10.1016/j.epsl.2011.04.001 Google Scholar
  175. Zhang N, Zhong SJ, Leng W, Li ZX (2010) A model for the evolution of Earth’s mantle structure since the early Paleozoic. J Geophys Res 115:B06401. doi: 10.1029/2009JB006896
  176. Zhao D, Lei J (2003) Seismic ray path variations in a 3D global velocity model. Phys Earth Planet Int 141:153–166. doi: 10.1016/j.pepi.2003.11.010 Google Scholar
  177. Zindler A, Hart S (1986) Chemical geodynamics. Ann Rev Earth Planet Sci 14:493–571. doi: 10.1146/annurev.ea.14.050186.002425 Google Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  1. 1.Research School of Earth SciencesThe Australian National UniversityCanberraAustralia
  2. 2.Department of Earth Sciences and EngineeringImperial College LondonLondonUK
  3. 3.Department of Earth and Planetary SciencesHarvard UniversityCambridgeUSA

Personalised recommendations