Ontology Based Inferences Engine for Veterinary Diagnosis

  • H. Andres Melgar S.
  • Diego Salas Guillén
  • Jacklin Gonzales Maceda
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8943)

Abstract

Motivated on knowledge representation and veterinary domain this project aims at using semantic technologies to develop a tool which supports veterinary diagnosis. For this purpose an ontology based inference engine was developed following the diagnosis task definition provided by CommonKADS methodology. OWL was the language used for representing the ontologies, they were built using Protégé and processed using the Jena API. The inference engine was tested with two different ontologies. This shows the versatility of the developed tool that can easily be used to diagnose different types of diseases. This is an example of the application of CommonKADS diagnosis template using ontologies. We are currently working to make diagnoses in other domains of knowledge.

Keywords

Ontology Inferences Veterinary diagnosis CommonKADS 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Stanley, I.H., Conwell, Y., Bowen, C., Van Orden, K.A.: Pet ownership may attenuate loneliness among older adult primary care patients who live alone. Aging & Mental Health 18, 394–399 (2014). PMID: 24047314CrossRefGoogle Scholar
  2. 2.
    Iotti, B., Valazza, A.: A reliable, low-cost picture archiving and communications system for small and medium veterinary practices built using open-source technology. Journal of Digital Imaging, 1–8 (2014)Google Scholar
  3. 3.
    Volkova, S., Hsu, W.: Computational knowledge and information management in veterinary epidemiology. In: 2010 IEEE International Conference on Intelligence and Security Informatics (ISI), pp. 120–125 (2010)Google Scholar
  4. 4.
    Tangtulyangkul, P., Hocking, T., Fung, C.C.: Intelligent information mining from veterinary clinical records and open source repository. In: IEEE Region 10 Conference TENCON 2009, pp. 1–6 (2009)Google Scholar
  5. 5.
    Chandrasekaran, B., Josephson, J.R., Benjamins, R.: Ontology of tasks and methods. In: AAAI Spring Symposium (1997)Google Scholar
  6. 6.
    Schreiber, G.: Knowledge engineering and Management: the CommonKADS methodology. MIT Press (2000)Google Scholar
  7. 7.
    Surakratanasakul, B., Hamamoto, K.: CommonKADS’s knowledge model using UML architectural view and extension mechanism, pp. 59–63 (2011). Cited by (since 1996) 1Google Scholar
  8. 8.
    Schreiber, A., Terpstra, P.: Sisyphus-VT: A CommonKADS solution. International Journal of Human-Computer Studies 44, 373–402 (1996)CrossRefGoogle Scholar
  9. 9.
    Van de Velde, W.: Knowledge and software engineering. International Journal of Engineering Intelligent Systems for Electrical Engineering and Communications 3, 3–8 (1995). Cited by (since 1996) 0Google Scholar
  10. 10.
    Schreiber, G., Wielinga, B., de Hoog, R., Akkermans, H., Van de Velde, W.: CommonKADS: a comprehensive methodology for KBS development. IEEE Expert 9, 28–37 (1994)CrossRefGoogle Scholar
  11. 11.
    Tsai, Y.H., Ko, C.H., Lin, K.C.: Using CommonKADS method to build prototype system in medical insurance fraud detection. Journal of Networks 9, 1798–1802 (2014)CrossRefGoogle Scholar
  12. 12.
    Sriwichai, P., Meksamoot, K., Chakpitak, N., Dahal, K., Jengjalean, A.: The effectiveness of knowledge management system in research mentoring using knowledge engineering. International Education Studies 7, 25 (2014)CrossRefGoogle Scholar
  13. 13.
    Yang, Y.: Design and implementation of knowledge system of wireless communication equipment fault diagnosis. Advanced Materials Research 945, 1108–1111 (2014)CrossRefGoogle Scholar
  14. 14.
    Lopes, L.F., Lopes, M.C., Fialho, F.A.P., Gonçalves, A.L.: Knowledge system for acupuncture diagnosis: a modeling using CommonKADS. Gestão & Produção 18, 351–366 (2011)CrossRefGoogle Scholar
  15. 15.
    Kingston, J.K.C.: Designing knowledge based systems: the CommonKADS design model. Knowledge-Based Systems 11, 311–319 (1998)CrossRefGoogle Scholar
  16. 16.
    Schreiber, G., Crubézy, M., Musen, M.A.: A case study in using Protégé-2000 as a tool for CommonKADS. In: Dieng, R., Corby, O. (eds.) EKAW 2000. LNCS (LNAI), vol. 1937, pp. 33–48. Springer, Heidelberg (2000) CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • H. Andres Melgar S.
    • 1
    • 2
  • Diego Salas Guillén
    • 1
  • Jacklin Gonzales Maceda
    • 1
  1. 1.Grupo de Reconocimiento de Patrones e Inteligencia Artificial AplicadaPontificia Universidad Católica del PerúLimaPeru
  2. 2.Sección de Ingeniería Informática, Departamento de IngenieríaPontificia Universidad Católica del PerúLimaPeru

Personalised recommendations