An Ontology-Based Intelligent Speed Adaptation System for Autonomous Cars

  • Lihua Zhao
  • Ryutaro Ichise
  • Seiichi Mita
  • Yutaka Sasaki
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8943)

Abstract

Intelligent Speed Adaptation (ISA) is one of the key technologies for Advanced Driver Assistance Systems (ADAS), which aims to reduce car accidents by supporting drivers to comply with the speed limit. Context awareness is indispensable for autonomous cars to perceive driving environment, where the information should be represented in a machine-understandable format. Ontologies can represent knowledge in a format that machines can understand and perform human-like reasoning. In this paper, we present an ontology-based ISA system that can detect overspeed situations by accessing to the ontology-based Knowledge Base (KB). We conducted experiments on a car simulator as well as on real-world data collected with an intelligent car. Sensor data are converted into RDF stream data and we construct SPARQL queries and a C-SPARQL query to access to the Knowledge Base. Experimental results show that the ISA system can promptly detect overspeed situations by accessing to the ontology-based Knowledge Base.

Keywords

Ontology Intelligent Speed Adaptation (ISA) Autonomous car Knowledge Base SPARQL RDF stream 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    SWRL: A Semantic Web Rule Language Combining OWL and RuleML. http://www.w3.org/Submission/SWRL/
  2. 2.
  3. 3.
    Allemang, D., Hendler, J.A.: Semantic Web for the Working Ontologist - Effective Modeling in RDFS and OWL, 2nd edn. Morgan Kaufmann (2011)Google Scholar
  4. 4.
    Armand, A., Filliat, D., Ibañez-Guzman, J.: Ontology-based context awareness for driving assistance systems. In: IEEE Intelligent Vehicles Symposium, pp. 227–233 (2014)Google Scholar
  5. 5.
    Barbieri, D.F., Braga, D., Ceri, S., Grossniklaus, M.: An execution environment for C-SPARQL queries. In: 13th International Conference on Extending Database Technology, pp. 441–452. ACM (2010)Google Scholar
  6. 6.
    Bechhofer, S., van Harmelen, F., Hendler, J., Horrocks, I., McGuinness, D.L., Patel-Schneider, P.F., Stein, L.A.: OWL Web Ontology Language Reference. W3C Recommendation (2004). http://www.w3.org/TR/owl-ref/
  7. 7.
    Eskandarian, A.: Handbook of Intelligent Vehicles. Springer (2012)Google Scholar
  8. 8.
    Euzenat, J., Shvaiko, P.: Ontology Matching. Springer, Heidelberg (2007)MATHGoogle Scholar
  9. 9.
    Gruber, T.R.: A Translation Approach to Portable Ontology Specifications. Knowledge Acquisition 5(2), 199–220 (1993)CrossRefGoogle Scholar
  10. 10.
    Gutierrez, C., Hurtado, C.A., Vaisman, A.: Introducing Time into RDF. IEEE Transactions on Knowledge and Data Engineering 19(2), 207–218 (2007)CrossRefGoogle Scholar
  11. 11.
    Heath, T., Bizer, C.: Linked Data: Evolving the Web into a Global Data Space. Morgan & Claypool (2011)Google Scholar
  12. 12.
    Hülsen, M., Zöllner, J.M., Weiss, C.: Traffic intersection situation description ontology for advanced driver assistance. In: IEEE Intelligent Vehicles Symposium, pp. 993–999. IEEE (2011)Google Scholar
  13. 13.
    Knublauch, H., Fergerson, R.W., Noy, N.F., Musen, M.A.: The Protégé OWL plugin: an open development environment for semantic web applications. In: McIlraith, S.A., Plexousakis, D., van Harmelen, F. (eds.) ISWC 2004. LNCS, vol. 3298, pp. 229–243. Springer, Heidelberg (2004) CrossRefGoogle Scholar
  14. 14.
    Pollard, E., Morignot, P., Nashashibi, F.: An ontology-based model to determine the automation level of an automated vehicle for co-driving. In: 16th International Conference on Information Fusion, pp. 596–603 (2013)Google Scholar
  15. 15.
    Regele, R.: Using ontology-based traffic models for more efficient decision making of autonomous vehicles. In: 4th International Conference on Autonomic and Autonomous Systems, pp. 94–99. IEEE Computer Society (2008)Google Scholar
  16. 16.
    Robusto, C.C.: The Cosine-Haversine Formula. The American Mathematical Monthly 64(1), 38–40 (1957)CrossRefMathSciNetGoogle Scholar
  17. 17.
    Sirin, E., Parsia, B., Grau, B.C., Kalyanpur, A., Katz, Y.: Pellet: A Practical OWL-DL Reasoner. Journal of Web Semantics: Science, Services and Agents on the World Wide Web 5(2) (2007)Google Scholar
  18. 18.
    Staab, S., Studer, R.: Handbook on Ontologies, 2nd edn. Springer, Heidelberg (2009) CrossRefMATHGoogle Scholar
  19. 19.
    Tideman, M., Janssen, S.J.: A simulation environment for developing intelligent headlight systems. In: IEEE Intelligent Vehicles Symposium, pp. 225–231 (2010)Google Scholar
  20. 20.
    Zhao, L., Ichise, R.: Instance-based ontological knowledge acquisition. In: Cimiano, P., Corcho, O., Presutti, V., Hollink, L., Rudolph, S. (eds.) ESWC 2013. LNCS, vol. 7882, pp. 155–169. Springer, Heidelberg (2013) CrossRefGoogle Scholar
  21. 21.
    Zhao, L., Ichise, R.: Ontology Integration for Linked Data. Journal on Data Semantics (2014). http://dx.doi.org/10.1007/s13740-014-0041-9

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Lihua Zhao
    • 1
  • Ryutaro Ichise
    • 2
  • Seiichi Mita
    • 1
  • Yutaka Sasaki
    • 1
  1. 1.Toyota Technological InstituteNagoyaJapan
  2. 2.National Institute of InformaticsTokyoJapan

Personalised recommendations