A Keyword Exploration for Retrieval from Biomimetics Databases

  • Kouji KozakiEmail author
  • Riichiro Mizoguchi
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8943)


Biomimetics contributes to innovative engineering by imitating the models, systems, and elements of nature. Biomimetics research requires the development of a biomimetics database including widely varied knowledge across different domains. Interoperability of knowledge among those domains is necessary to create such a database. Ontologies clarify concepts that appear in target domains and help to improve interoperability. Furthermore, linked data technologies are very effective for integrating a database with existing biological diversity databases. In this paper, we propose a keyword exploration technique to find appropriate keywords for retrieving meaningful knowledge from various biomimetics databases. Such a technique could support idea creation by users based on a biomimetics ontology. This paper shows a prototype of the biomimetics ontology and keyword exploration tool.


Biomimetics Biological diversity Ontology Linked data Keyword exploration for retrieval 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Shimomura, M.: Engineering Biomimetics: Integration of Biology and Nanotechnology, Design for Innovative Value Towards a Sustainable Society, pp. 905–907 (2012)Google Scholar
  2. 2.
    Vattam, S., Wiltgen, B., Helms, M., Goel, A., Yen, J.: DANE: Fostering Creativity in and through Biologically Inspired Design. In: Proc. First International Conference on Design Creativity, pp. 115–122, Kobe, Japan, November 2010Google Scholar
  3. 3.
    Gruber, T.: A translation approach to portable ontology specifications. In: Proc. of JKAW’92, pp. 89–108 (1992)Google Scholar
  4. 4.
    Cheong, H., et al.: Biologically Meaningful Keywords for Functional Terms of the Functional Basis. Journal of Mechanical Design, vol. 133 (2011). doi: 10.1115/1.4003249
  5. 5.
    Hirtz, J., Stone, R.B., et al.: A Functional Basis for Engineering Design: Reconciling and Evolving Previous Effort, NIST Technical Note 1447 (2002)Google Scholar
  6. 6.
    Kitamura, Y., Segawa, S., Sasajima, M., Tarumi, S., Mizoguchi, R.: Deep Semantic Mapping between Functional Taxonomies for Interoperable Semantic Search. In: Domingue, J., Anutariya, C. (eds.) ASWC 2008. LNCS, vol. 5367, pp. 137–151. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  7. 7.
    Kozaki, K., Hirota, T., Mizoguchi, R.: Understanding an Ontology through Divergent Exploration. In: Antoniou, G., Grobelnik, M., Simperl, E., Parsia, B., Plexousakis, D., De Leenheer, P., Pan, J. (eds.) ESWC 2011, Part I. LNCS, vol. 6643, pp. 305–320. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  8. 8.
    Mizoguchi, R., Sunagawa, E., Kozaki, K., Kitamura, Y.: : Hozo. J. of Applied Ontology 2(2), 159–179 (2007)Google Scholar
  9. 9.
    Kozaki, K., Sunagawa, E., Kitamura, Y., Mizoguchi, R.: Role Representation Model Using OWL and SWRL. In: Proc. of 2nd Workshop on Roles and Relationships in Object Oriented Programming, Multiagent Systems, and Ontologies, Berlin, pp. 39–46 (2007)Google Scholar
  10. 10.
    Kozaki, K., Yamagata, Y., Imai, T., Ohe, K., Mizoguchi, R.: Publishing a Disease Ontologies as Linked Data. In: Kim, W., Ding, Y., Kim, H.-G. (eds.) JIST 2013. LNCS, vol. 8388, pp. 110–128. Springer, Heidelberg (2014)CrossRefGoogle Scholar
  11. 11.
    Stroble, J., Stone, R., McAdams, D.A., Watkins, S.: An Engineering-to-Biology Thesaurus To Promote Better Collaboration, Creativity and Discovery. In: Proceedings of the CIRP DESIGN 2009 International Conference (2009)Google Scholar
  12. 12.
    Ferré, S., Hermann, A.: Reconciling faceted search and query languages for the semantic web. IJMSO 7(1), 37–54 (2012)CrossRefGoogle Scholar
  13. 13.
    Guyonvarch, J., Ferré, S.: Scalewelis: a scalable query-based faceted search system on top pf SPARQL endpoints. In: Proceedings of the 3rd Open Challenge on Multilingual Question Answering over Linked Data (QALD-3), Valencia, Spain (2013)Google Scholar
  14. 14.
    Popov, I.O., Schraefel, M.C., Hall, W., Shadbolt, N.: Connecting the Dots: A Multi-pivot Approach to Data Exploration. In: Aroyo, L., Welty, C., Alani, H., Taylor, J., Bernstein, A., Kagal, L., Noy, N., Blomqvist, E. (eds.) ISWC 2011, Part I. LNCS, vol. 7031, pp. 553–568. Springer, Heidelberg (2011)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  1. 1.The Institute of Scientific and Industrial ResearchOsaka UniversityIbaraki, OsakaJapan
  2. 2.Japan Advanced Institute of Science and TechnologyIshikawaJapan

Personalised recommendations