International Workshop on Algorithms and Computation

WALCOM 2015: WALCOM: Algorithms and Computation pp 65-76 | Cite as

A Practical Succinct Data Structure for Tree-Like Graphs

  • Johannes Fischer
  • Daniel Peters
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8973)

Abstract

We present a new succinct data structure for graphs that are “tree-like,” in the sense that the number of “additional” edges (w.r.t. a spanning tree) is not too high. Our algorithmic idea is to represent a BFS-spanning tree of the graph with a succinct data structure for trees, and enhance it with additional information that accounts for the non-tree edges. In practical tests, our data structure performs well for graphs containing up to 10% of non-tree edges, reducing the space of a pointer-based representation by a factor of ≈20, while increasing the worst-case running times for the operations by roughly the same factor.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Arroyuelo, D., Cánovas, R., Navarro, G., Sadakane, K.: Succinct trees in practice. In: Proc. ALENEX, pp. 84–97. SIAM (2010)Google Scholar
  2. 2.
    Barbay, J., Claude, F., Navarro, G.: Compact rich-functional binary relation representations. In: López-Ortiz, A. (ed.) LATIN 2010. LNCS, vol. 6034, pp. 170–183. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  3. 3.
    Belazzougui, D., Navarro, G.: New lower and upper bounds for representing sequences. In: Epstein, L., Ferragina, P. (eds.) ESA 2012. LNCS, vol. 7501, pp. 181–192. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  4. 4.
    Benoit, D., Demaine, E.D., Munro, J.I., Raman, R., Raman, V., Rao, S.S.: Representing trees of higher degree. Algorithmica 43(4), 275–292 (2005)MATHMathSciNetCrossRefGoogle Scholar
  5. 5.
    Blandford, D.K., Blelloch, G.E., Kash, I.A.: Compact representations of separable graphs. In: Proc. SODA, pp. 679–688. ACM/SIAM (2003)Google Scholar
  6. 6.
    Blandford, D.K., Blelloch, G.E., Kash, I.A.: An experimental analysis of a compact graph representation. In: ALENEX/ANALC, pp. 49–61. SIAM (2004)Google Scholar
  7. 7.
    Davoodi, P., Raman, R., Satti, S.R.: Succinct representations of binary trees for range minimum queries. In: Gudmundsson, J., Mestre, J., Viglas, T. (eds.) COCOON 2012. LNCS, vol. 7434, pp. 396–407. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  8. 8.
    Farzan, A., Fischer, J.: Compact representation of posets. In: Asano, T., Nakano, S.-i., Okamoto, Y., Watanabe, O. (eds.) ISAAC 2011. LNCS, vol. 7074, pp. 302–311. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  9. 9.
    Farzan, A., Munro, J.I.: Succinct representations of arbitrary graphs. In: Halperin, D., Mehlhorn, K. (eds.) ESA 2008. LNCS, vol. 5193, pp. 393–404. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  10. 10.
    Farzan, A., Munro, J.I.: A uniform approach towards succinct representation of trees. In: Gudmundsson, J. (ed.) SWAT 2008. LNCS, vol. 5124, pp. 173–184. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  11. 11.
    Gavoille, C., Hanusse, N.: On compact encoding of pagenumber k graphs. Discrete Mathematics & Theoretical Computer Science 10(3), 23–34 (2008)MathSciNetGoogle Scholar
  12. 12.
    Geary, R.F., Rahman, N., Raman, R., Raman, V.: A simple optimal representation for balanced parentheses. Theor. Comput. Sci. 368(3), 231–246 (2006)MATHMathSciNetCrossRefGoogle Scholar
  13. 13.
    Gog, S., Ohlebusch, E.: Fast and lightweight LCP-array construction algorithms. In: Proc. ALENEX, pp. 25–34. SIAM (2011)Google Scholar
  14. 14.
    Golynski, A., Munro, J.I., Rao, S.S.: Rank/select operations on large alphabets: a tool for text indexing. In: Proc. SODA, pp. 368–373. ACM/SIAM (2006)Google Scholar
  15. 15.
    González, R., Grabowski, S., Mäkinen, V., Navarro, G.: Practical implementation of rank and select queries. In: Poster Proceedings Volume of 4th Workshop on Efficient and Experimental Algorithms (WEA), Greece, pp. 27–38. CTI Press and Ellinika Grammata (2005)Google Scholar
  16. 16.
    Grossi, R., Ottaviano, G.: Design of practical succinct data structures for large data collections. In: Bonifaci, V., Demetrescu, C., Marchetti-Spaccamela, A. (eds.) SEA 2013. LNCS, vol. 7933, pp. 5–17. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  17. 17.
    Gurevich, Y., Stockmeyer, L., Vishkin, U.: Solving NP-hard problems on graphs that are almost trees and an application to facility location problems. J. ACM 31(3), 459–473 (1984)MATHMathSciNetGoogle Scholar
  18. 18.
    Huson, D.H., Scornavacca, C.: A survey of combinatorial methods for phylogenetic networks. Genome Biology and Evolution 3, 23 (2011)CrossRefGoogle Scholar
  19. 19.
    Jacobson, G.J.: Space-efficient static trees and graphs. In: Proc. FOCS, pp. 549–554. IEEE Computer Society (1989)Google Scholar
  20. 20.
    Joannou, S., Raman, R.: Dynamizing succinct tree representations. In: Klasing, R. (ed.) SEA 2012. LNCS, vol. 7276, pp. 224–235. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  21. 21.
    Kannan, S., Naor, M., Rudich, S.: Implicit representation of graphs. SIAM J. Discrete Math. 5(4), 596–603 (1992)MATHMathSciNetCrossRefGoogle Scholar
  22. 22.
    Munro, J.I.: Tables. In: Chandru, V., Vinay, V. (eds.) FSTTCS 1996. LNCS, vol. 1180, pp. 37–42. Springer, Heidelberg (1996)CrossRefGoogle Scholar
  23. 23.
    Munro, J.I., Raman, R., Raman, V., Rao, S.S.: Succinct representations of permutations. In: Baeten, J.C.M., Lenstra, J.K., Parrow, J., Woeginger, G.J. (eds.) ICALP 2003. LNCS, vol. 2719, pp. 345–356. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  24. 24.
    Munro, J.I., Raman, V.: Succinct representation of balanced parentheses, static trees and planar graphs. In: Proc. FOCS, pp. 118–126. IEEE Computer Society (1997)Google Scholar
  25. 25.
    Munro, J.I., Raman, V.: Succinct representation of balanced parentheses and static trees. SIAM J. Comput. 31(3), 762–776 (2001)MATHMathSciNetCrossRefGoogle Scholar
  26. 26.
    Pagh, R.: Low redundancy in static dictionaries with constant query time. SIAM J. Comput. 31(2), 353–363 (2001)MATHMathSciNetCrossRefGoogle Scholar
  27. 27.
    Pǎtraşcu, M.: Succincter. In: Proc. FOCS, pp. 305–313. IEEE Computer Society (2008)Google Scholar
  28. 28.
    Raman, R., Raman, V., Rao, S.S.: Succinct indexable dictionaries with applications to encoding k-ary trees and multisets. ACM Transactions on Algorithms 3(4), Article No. 43 (2007)Google Scholar
  29. 29.
    Sadakane, K.: Compressed suffix trees with full functionality. Theory Comput. Syst 41(4), 589–607 (2007)MATHMathSciNetCrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Johannes Fischer
    • 1
  • Daniel Peters
    • 2
  1. 1.TU DortmundGermany
  2. 2.Physikalisch-Technische Bundesanstalt (PTB)Germany

Personalised recommendations