International Workshop on Algorithms and Computation

WALCOM 2015: WALCOM: Algorithms and Computation pp 270-281 | Cite as

Non-repetitive Strings over Alphabet Lists

  • Neerja Mhaskar
  • Michael Soltys
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8973)

Abstract

A word is non-repetitive if it does not contain a subword of the form vv. Given a list of alphabets L = L1,L2,…,Ln, we investigate the question of generating non-repetitive words w = w1w2wn, such that the symbol wi is a letter in the alphabet Li. This problem has been studied by several authors (e.g., [GKM10], [Sha09]), and it is a natural extension of the original problem posed and solved by A. Thue. While we do not solve the problem in its full generality, we show that such strings exist over many classes of lists. We also suggest techniques for tackling the problem, ranging from online algorithms, to combinatorics over 0-1 matrices, and to proof complexity. Finally, we show some properties of the extension of the problem to abelian squares.

Keywords

Thue words non-repetitive square-free abelian square 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [Abr87]
    Abrahamson, K.R.: Generalized string matching. SIAM J. Comput. 16(6), 1039–1051 (1987)MATHMathSciNetCrossRefGoogle Scholar
  2. [Ber95]
    Berstel, J.: Axel Thue’s papers on repetitions in words: a translation. Technical report, Université du Québec a Montréal (1995)Google Scholar
  3. [CN10]
    Cook, S.A., Nguyen, P.: Logical Foundations of Proof Complexity. Cambridge Univeristy Press (2010)Google Scholar
  4. [DKT11]
    Dvořák, Z., Kawarabayashi, K.-I., Thomas, R.: Three-coloring triangle-free planar graphs in linear time. ACM Trans. Algorithms 7(4), 41:1–41:14 (2011)Google Scholar
  5. [GJS76]
    Garey, M.R., Johnson, D.S., Stockmeyer, L.: Some simplified np-complete graph problems. Theoretical Computer Science 1(3), 237–267 (1976)MATHMathSciNetCrossRefGoogle Scholar
  6. [GKM10]
    Grytczuk, J., Kozik, J., Micek, P.: A new approach to nonrepetitive sequences. arXiv:1103.3809 (December 2010)Google Scholar
  7. [Grö59]
    Grötzsch, H.: Ein dreifarbensatz für dreikreisfreie netze auf der kugel 8, 109–120 (1959)Google Scholar
  8. [Hal87]
    Hall, P.: On representatives of subsets. In: Gessel, I., Rota, G.-C. (eds.) Classic Papers in Combinatorics. Modern Birkhäuser Classics, pp. 58–62. Birkhäuser, Basel (1987)Google Scholar
  9. [Lee57]
    Leech, J.: A problem on strings of beads. Mathematical Gazette, 277 (December 1957)Google Scholar
  10. [Pap94]
    Papadimitriou, C.H.: Computational Complexity. Addison-Wesley (1994)Google Scholar
  11. [Ram07]
    Rampersad, N.: Overlap-free words and generalizations. PhD thesis, Waterloo University (2007)Google Scholar
  12. [Sha09]
    Shallit, J.: A second course in formal languages and automata theory. Cambridge Univeristy Press (2009)Google Scholar
  13. [Sta99]
    Stanley, R.P.: Exercises on catalan and related numbers. Enumerative Combinatorics 2 (1999)Google Scholar
  14. [SW09]
    Smyth, W.F., Wang, S.: An adaptive hybrid pattern-matching algorithm on indeterminate strings. Int. J. Found. Comput. Sci. 20(6), 985–1004 (2009)MATHMathSciNetCrossRefGoogle Scholar
  15. [Thu06]
    Thue, A.: Über unendliche zeichenreichen. Skrifter: Matematisk-Naturvidenskapelig Klasse. Dybwad (1906)Google Scholar
  16. [Tom10]
    Robinson Tompkins, C.: The morphisms with unstackable image words. CoRR, abs/1006.1273 (2010)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Neerja Mhaskar
    • 1
  • Michael Soltys
    • 2
  1. 1.Dept. of Computing & SoftwareMcMaster UniversityHamiltonCanada
  2. 2.Dept. of Computer ScienceCalifornia State University Channel IslandsCamarilloUSA

Personalised recommendations