Advertisement

Simultaneous Drawing of Planar Graphs with Right-Angle Crossings and Few Bends

  • Michael A. Bekos
  • Thomas C. van Dijk
  • Philipp Kindermann
  • Alexander Wolff
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8973)

Abstract

Given two planar graphs that are defined on the same set of vertices, a RAC simultaneous drawing is a drawing of the two graphs where each graph is drawn planar, no two edges overlap, and edges of one graph can cross edges of the other graph only at right angles. In the geometric version of the problem, vertices are drawn as points and edges as straight-line segments. It is known, however, that even pairs of very simple classes of planar graphs (such as wheels and matchings) do not always admit a geometric RAC simultaneous drawing.

In order to enlarge the class of graphs that admit RAC simultaneous drawings, we allow edges to have bends. We prove that any pair of planar graphs admits a RAC simultaneous drawing with at most six bends per edge. For more restricted classes of planar graphs (e.g., matchings, paths, cycles, outerplanar graphs, and subhamiltonian graphs), we significantly reduce the required number of bends per edge. All our drawings use quadratic area.

Keywords

Planar Graph Edge Incident Vertical Segment Horizontal Segment Outerplanar Graph 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Angelini, P., Battista, G.D., Frati, F., Patrignani, M., Rutter, I.: Testing the simultaneous embeddability of two graphs whose intersection is a biconnected or a connected graph. J. Discrete Algorithms 14, 150–172 (2012)zbMATHMathSciNetCrossRefGoogle Scholar
  2. 2.
    Angelini, P., Geyer, M., Kaufmann, M., Neuwirth, D.: On a tree and a path with no geometric simultaneous embedding. J. Graph Algorithms Appl. 16(1), 37–83 (2012)zbMATHMathSciNetCrossRefGoogle Scholar
  3. 3.
    Argyriou, E.N., Bekos, M.A., Kaufmann, M., Symvonis, A.: Geometric RAC simultaneous drawings of graphs. J. Graph Algorithms Appl. 17(1), 11–34 (2013)zbMATHMathSciNetCrossRefGoogle Scholar
  4. 4.
    Bekos, M.A., van Dijk, T.C., Kindermann, P., Wolff, A.: Simultaneous drawing of planar graphs with right-angle crossings and few bends. Arxiv report (2014), http://arxiv.org/abs/1408.3325
  5. 5.
    Bläsius, T., Kobourov, S.G., Rutter, I.: Simultaneous embedding of planar graphs. In: Tamassia, R. (ed.) Handbook of Graph Drawing and Visualization, ch. 11, pp. 349–381. CRC Press (2013)Google Scholar
  6. 6.
    Brass, P., Cenek, E., Duncan, C.A., Efrat, A., Erten, C., Ismailescu, D.P., Kobourov, S.G., Lubiw, A., Mitchell, J.S.: On simultaneous planar graph embeddings. Comput. Geom. Theory Appl. 36(2), 117–130 (2007)zbMATHMathSciNetCrossRefGoogle Scholar
  7. 7.
    Brightwell, G., Scheinerman, E.R.: Representations of planar graphs. SIAM J. Discrete Math. 6(2), 214–229 (1993)zbMATHMathSciNetCrossRefGoogle Scholar
  8. 8.
    Cabello, S., van Kreveld, M., Liotta, G., Meijer, H., Speckmann, B., Verbeek, K.: Geometric simultaneous embeddings of a graph and a matching. J. Graph Algorithms Appl. 15(1), 79–96 (2011)zbMATHMathSciNetCrossRefGoogle Scholar
  9. 9.
    Erten, C., Kobourov, S.G.: Simultaneous embedding of a planar graph and its dual on the grid. Theory Comput. Syst. 38(3), 313–327 (2005)zbMATHMathSciNetCrossRefGoogle Scholar
  10. 10.
    Erten, C., Kobourov, S.G.: Simultaneous embedding of planar graphs with few bends. J. Graph Algorithms Appl. 9(3), 347–364 (2005)zbMATHMathSciNetCrossRefGoogle Scholar
  11. 11.
    Kammer, F.: Simultaneous embedding with two bends per edge in polynomial area. In: Arge, L., Freivalds, R. (eds.) SWAT 2006. LNCS, vol. 4059, pp. 255–267. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  12. 12.
    Kaufmann, M., Wiese, R.: Embedding vertices at points: Few bends suffice for planar graphs. J. Graph Algorithms Appl. 6(1), 115–129 (2002)zbMATHMathSciNetCrossRefGoogle Scholar
  13. 13.
    Nash-Williams, C.: Decomposition of finite graphs into forests. J. London Math. Soc. 39, 12 (1964)zbMATHMathSciNetCrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Michael A. Bekos
    • 1
  • Thomas C. van Dijk
    • 2
  • Philipp Kindermann
    • 2
  • Alexander Wolff
    • 2
  1. 1.Wilhelm-Schickard-Institut für InformatikUniversität TübingenGermany
  2. 2.Lehrstuhl für Informatik IUniversität WürzburgGermany

Personalised recommendations