Advertisement

Competitive Analysis for Multi-objective Online Algorithms

  • Morten Tiedemann
  • Jonas Ide
  • Anita Schöbel
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8973)

Abstract

So far, the concept of competitive analysis for online problems is in general applied to single-objective online problems. However, many online problems can be extended to multi-objective online problems in a natural way, but a uniform theory for the analysis of these problems is not provided in the literature. We expand the concept of competitive analysis to multi-objective online problems and achieve a consistent framework for the analysis of multi-objective online problems. Furthermore, we analyze the multi-objective time series search problem and present deterministic algorithms with best possible competitive ratios.

Keywords

competitive analysis online optimization multi-objective optimization time series search 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bazgan, C., Gourvès, L., Monnot, J.: Approximation with a Fixed Number of Solutions of Some Biobjective Maximization Problems. In: Solis-Oba, R., Persiano, G. (eds.) WAOA 2011. LNCS, vol. 7164, pp. 233–246. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  2. 2.
    Borodin, A., El-Yaniv, R.: Online Computation and Competitive Analysis. Cambridge University Press (1998)Google Scholar
  3. 3.
    Ehrgott, M.: Multicriteria Optimization. Springer (2005)Google Scholar
  4. 4.
    El-Yaniv, R., Fiat, A., Karp, R.M., Turpin, G.: Optimal search and one-way trading online algorithms. Algorithmica 30(1), 101–139 (2001)zbMATHMathSciNetCrossRefGoogle Scholar
  5. 5.
    Erlebach, T., Kellerer, H., Pferschy, U.: Approximating Multiobjective Knapsack Problems. Management Sciences 48(12), 1603–1612 (2002)zbMATHCrossRefGoogle Scholar
  6. 6.
    Fiat, A. (ed.): Online Algorithms 1996. LNCS, vol. 1442. Springer, Heidelberg (1998)zbMATHGoogle Scholar
  7. 7.
    Kalyanasundaram, B., Pruhs, K.: Speed is as powerful as clairvoyance. Journal of the ACM 47(4), 617–643 (2000)zbMATHMathSciNetCrossRefGoogle Scholar
  8. 8.
    Motwani, R., Phillips, S., Torng, E.: Non-clairvoyant scheduling. Theoretical Computer Science 130, 17–47 (1994)zbMATHMathSciNetCrossRefGoogle Scholar
  9. 9.
    Phillips, C.A., Stein, C., Torng, E., Wein, J.: Optimal time-critical scheduling via resource augmentation. In: Proceedings of the 29th ACM Symposium on the Theory of Computing (STOC), pp. 140–149 (1997)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Morten Tiedemann
    • 1
  • Jonas Ide
    • 1
  • Anita Schöbel
    • 1
  1. 1.DFG RTG 1703, Institute for Numerical and Applied MathematicsUniversity of GöttingenGöttingenGermany

Personalised recommendations