International Workshop on Algorithms and Computation

WALCOM 2015: WALCOM: Algorithms and Computation pp 149-160 | Cite as

Fault-Tolerant Gathering of Asynchronous Oblivious Mobile Robots under One-Axis Agreement

  • Subhash Bhagat
  • Sruti Gan Chaudhuri
  • Krishnendu Mukhopadhyaya
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8973)


In this paper, we have studied one of the fundamental coordination problems for multi robot system, namely gathering, for n ≥ 2 asynchronous, oblivious mobile robots in the presence of f < n faulty robots. Earlier works have reported that, in general, to solve gathering problem for asynchronous robots, many assumptions are required, like multiplicity detection or total agreement in coordinate axis or constant amount of memory bits. However, in this paper we have proved that gathering of asynchronous robots is possible with less number of such assumptions and even in the presence of any number of faulty robots. In our case, the robots only agree on the direction and orientation of any one axis.


Gathering Crash fault Asynchronous Oblivious Swarm robots 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Agmon, N., Peleg, D.: Fault-tolerant gathering algorithms for autonomous mobile robots. In: Proceedings of the Fifteenth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA, pp. 1070–1078. Society for Industrial and Applied Mathematics, Philadelphia (2004)Google Scholar
  2. 2.
    Bouzid, Z., Das, S., Tixeuil, S.: Wait-free gathering of mobile robots. CoRR, abs/1207.0226 (2012)Google Scholar
  3. 3.
    Bouzid, Z., Das, S., Tixeuil, S.: Gathering of mobile robots tolerating multiple crash faults. In: 2013 IEEE 33rd International Conference on Distributed Computing Systems (ICDCS), pp. 337–346 (July 2013)Google Scholar
  4. 4.
    Cieliebak, M., Flocchini, P., Prencipe, G., Santoro, N.: Solving the robots gathering problem. In: Baeten, J.C.M., Lenstra, J.K., Parrow, J., Woeginger, G.J. (eds.) ICALP 2003. LNCS, vol. 2719, pp. 1181–1196. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  5. 5.
    Cieliebak, M., Flocchini, P., Prencipe, G., Santoro, N.: Distributed computing by mobile robots: Gathering. SIAM Journal on Computing 41(4), 829–879 (2012)MATHMathSciNetCrossRefGoogle Scholar
  6. 6.
    Cieliebak, M., Prencipe, G.: Gathering autonomous mobile robots. In: In Proc. SIROCCO, pp. 57–72 (2002)Google Scholar
  7. 7.
    Cohen, R., Peleg, D.: Convergence properties of the gravitational algorithm in asynchronous robot systems. SIAM Journal on Computing 34(6), 1516–1528 (2005)MATHMathSciNetCrossRefGoogle Scholar
  8. 8.
    Défago, X., Gradinariu, M., Messika, S., Raipin-Parvédy, P.: Fault-tolerant and self-stabilizing mobile robots gathering. In: Dolev, S. (ed.) DISC 2006. LNCS, vol. 4167, pp. 46–60. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  9. 9.
    Degener, B., Kempkes, B., Langner, T., Meyer auf der Heide, F., Pietrzyk, P., Wattenhofer, R.: A tight runtime bound for synchronous gathering of autonomous robots with limited visibility. In: Proceedings of the 23rd ACM Symposium on Parallelism in Algorithms and Architectures, SPAA 2011, pp. 139–148. ACM Press, New York (2011)Google Scholar
  10. 10.
    Dieudonné, Y., Petit, F.: Self-stabilizing gathering with strong multiplicity detection. Theoretical Computer Science 428(0), 47–57 (2012)MATHMathSciNetCrossRefGoogle Scholar
  11. 11.
    Flocchini, P., Prencipe, G., Santoro, N.: Distributed Computing by Oblivious Mobile Robots. Synthesis Lectures on Distributed Computing Theory. Morgan & Claypool Publishers (2012)Google Scholar
  12. 12.
    Flocchini, P., Prencipe, G., Santoro, N., Widmayer, P.: Gathering of asynchronous robots with limited visibility. Theoretical Computer Science 337(1-3), 147–168 (2005)MATHMathSciNetCrossRefGoogle Scholar
  13. 13.
    Flocchini, P., Prencipe, G., Santoro, N., Widmayer, P.: Arbitrary pattern formation by asynchronous, anonymous, oblivious robots. Theor. Comput. Sci. 407(1-3), 412–447 (2008)MATHMathSciNetCrossRefGoogle Scholar
  14. 14.
    Flocchini, P., Santoro, N., Viglietta, G., Yamashita, M.: Rendezvous of two robots with constant memory. In: Moscibroda, T., Rescigno, A.A. (eds.) SIROCCO 2013. LNCS, vol. 8179, pp. 189–200. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  15. 15.
    Gordon, N., Elor, Y., Bruckstein, A.: Gathering multiple robotic agents with crude distance sensing capabilities. In: Dorigo, M., Birattari, M., Blum, C., Clerc, M., Stützle, T., Winfield, A.F.T. (eds.) ANTS 2008. LNCS, vol. 5217, pp. 72–83. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  16. 16.
    Izumi, T., Katayama, Y., Inuzuka, N., Wada, K.: Gathering autonomous mobile robots with dynamic compasses: An optimal result. In: Pelc, A. (ed.) DISC 2007. LNCS, vol. 4731, pp. 298–312. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  17. 17.
    Katayama, Y., Tomida, Y., Imazu, H., Inuzuka, N., Wada, K.: Dynamic compass models and gathering algorithms for autonomous mobile robots. In: Prencipe, G., Zaks, S. (eds.) SIROCCO 2007. LNCS, vol. 4474, pp. 274–288. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  18. 18.
    Prencipe, G.: Instantaneous actions vs. full asynchronicity: Controlling and coordinating a set of autonomous mobile robots. In: Restivo, A., Ronchi Della Rocca, S., Roversi, L. (eds.) ICTCS 2001. LNCS, vol. 2202, pp. 154–171. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  19. 19.
    Prencipe, G.: Impossibility of gathering by a set of autonomous mobile robots. Theoretical Computer Science 384(2-3), 222–231 (2007); Structural Information and Communication Complexity (SIROCCO 2005)Google Scholar
  20. 20.
    Suzuki, I., Yamashita, M.: Formation and agreement problems for anonymous mobile robots. In: Proc. 31st Annual Conference on Communication, Control and Computing, pp. 93–102 (1993)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Subhash Bhagat
    • 1
  • Sruti Gan Chaudhuri
    • 2
  • Krishnendu Mukhopadhyaya
    • 1
  1. 1.Indian Statistical InstituteKolkataIndia
  2. 2.Jadavpur UniversityKolkataIndia

Personalised recommendations