Advertisement

Advanced Instrumentation of Frequency Modulation AFM for Subnanometer-Scale 2D/3D Measurements at Solid-Liquid Interfaces

  • Takeshi Fukuma
Chapter
Part of the NanoScience and Technology book series (NANO)

Abstract

Since the first demonstration of true atomic-resolution imaging by frequency modulation atomic force microscopy (FM-AFM) in liquid, the method has been used for imaging subnanometer-scale structures of various materials including minerals, biological systems and other organic molecules. Rencetly, there have been further advancements in the FM-AFM instrumentation. Three-dimensional (3D) force measurement techniques are proposed for visualizing 3D hydration structures formed at a solid-liquid interface. These methods further enabled to visualize 3D distributions of flexible surface structures at interfaces between soft materials and water. Furthermore, the fundamental performance such as force sensitivity and operation speed have been significantly improved using a small cantilever and high-speed phase detector. These technical advancements enabled direct visualization of atomic-scale interfacial phenomena at 1 frame/s. In this chapter, these recent advancements in the FM-AFM instrumentation and their applications to the studies on various interfacial phenomena are presented.

Keywords

Interfacial Phenomenon Hydration Structure DPPC Molecule Deflection Sensor Small Cantilever 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

This work was supported by KAKENHI (25706023), Japan Society for the Promotion of Science and ACT-C, Japan Science and Technology Agency.

References

  1. 1.
    T.R. Albrecht, P. Grütter, D. Horne, D. Ruger, J. Appl. Phys. 69, 668 (1991)ADSGoogle Scholar
  2. 2.
    F.J. Giessibl, Science 267, 68 (1995)ADSGoogle Scholar
  3. 3.
    S. Morita, R. Wiesendanger, E. Meyer (eds.), Noncontact Atomic Force Microscopy (Nanoscience and Technology) (Springer, Berlin, 2002)Google Scholar
  4. 4.
    S.P. Jarvis, T. Uchihashi, T. Ishida, H. Tokumoto, Y. Nakayama, J. Phys. Chem. B 104, 6091 (2000)Google Scholar
  5. 5.
    S.P. Jarvis, T. Ishida, T. Uchihashi, Y. Nakayama, H. Tokumoto, Appl. Phys. A 72, S129 (2001)ADSGoogle Scholar
  6. 6.
    K. Kobayashi, H. Yamada, K. Matsushige, Appl. Surf. Sci. 188, 430 (2002)ADSGoogle Scholar
  7. 7.
    T. Okajima, H. Sekiguchi, H. Arakawa, A. Ikai, Appl. Surf. Sci. 68, 210 (2003)Google Scholar
  8. 8.
    H. Sekiguchi, T. Okajima, H. Arakawa, S. Maeda, A. Takashima, A. Ikai, Appl. Surf. Sci. 61, 210 (2003)Google Scholar
  9. 9.
    T. Uchihashi, M.J. Higgins, Y. Nakayama, J.E. Sader, S.P. Jarvis, Nanotechnology 16, S49 (2005)ADSGoogle Scholar
  10. 10.
    M.J. Higgins, C.K. Riener, T. Uchihashi, J.E. Sader, R. McKendry, S.P. Jarvis, Nanotechnology 16, S85 (2005)ADSGoogle Scholar
  11. 11.
    A. Sasahara, S. Kitamura, H. Uetsuka, H. Onishi, J. Phys. Chem. B 108, 15735 (2004)Google Scholar
  12. 12.
    T. Fukuma, K. Kobayashi, K. Matsushige, H. Yamada, Appl. Phys. Lett. 87, 034101 (2005)ADSGoogle Scholar
  13. 13.
    T. Fukuma, M. Kimura, K. Kobayashi, K. Matsushige, H. Yamada, Rev. Sci. Instrum. 76, 053704 (2005)ADSGoogle Scholar
  14. 14.
    B.W. Hoogenboom, H.J. Hug, Y. Pellmont, S. Martin, P.L.T.M. Frederix, D. Fotiadis, A. Engel, Appl. Phys. Lett. 88, 193109 (2006)Google Scholar
  15. 15.
    S. Nishida, D. Kobayashi, T. Sakurada, T. Nakazawa, Y. Hoshi, H. Kawakatsu, Rev. Sci. Instrum. 79, 123703 (2008)ADSGoogle Scholar
  16. 16.
    S. Rode, N. Oyabu, K. Kobayashi, H. Yamada, A. Kühnle, Langmuir 25, 2850 (2009)Google Scholar
  17. 17.
    M. Higgins, M. Polcik, T. Fukuma, J. Sader, Y. Nakayama, S.P. Jarvis, Biophys. J. 91, 2532 (2006)ADSGoogle Scholar
  18. 18.
    T. Fukuma, M.J. Higgins, S.P. Jarvis, Biophys. J. 92, 3603 (2007)ADSGoogle Scholar
  19. 19.
    T. Fukuma, M.J. Higgins, S.P. Jarvis, Phys. Rev. Lett. 98, 106101 (2007)ADSGoogle Scholar
  20. 20.
    T. Fukuma, A.S. Mostaert, S.P. Jarvis, Nanotechnology 19, 384010 (2008)ADSGoogle Scholar
  21. 21.
    H. Yamada, K. Kobayashi, T. Fukuma, Y. Hirata, T. Kajita, K. Matsushige, Appl. Phys. Express 2, 095007 (2009)ADSGoogle Scholar
  22. 22.
    H. Asakawa, T. Fukuma, Nanotechnology 20, 264008 (2009)ADSGoogle Scholar
  23. 23.
    T. Fukuma, Y. Ueda, S. Yoshioka, H. Asakawa, Phys. Rev. Lett. 104, 016101 (2010)ADSGoogle Scholar
  24. 24.
    J.E. Sader, S.P. Jarvis, Appl. Phys. Lett. 84, 1801 (2004)ADSGoogle Scholar
  25. 25.
    N. Kobayashi, S. Itakura, H. Asakawa, T. Fukuma, J. Phys. Chem. C 117, 24388 (2013)Google Scholar
  26. 26.
    H. Asakawa, S. Yoshioka, K. Nishimura, T. Fukuma, ACS NANO 6, 9013 (2012)Google Scholar
  27. 27.
    K. Kimura, S. Ido, N. Oyabu, K. Kobayashi, Y. Hirata, T. Imai, H. Yamada, J. Chem. Phys. 132, 194705 (2010)ADSGoogle Scholar
  28. 28.
    T. Hiasa, K. Kimura, H. Onishi, M. Ohta, K. Watanabe, R. Kokawa, N. Oyabu, K. Kobayashi, H. Yamada, J. Phys. Chem. C 114, 21423 (2010)Google Scholar
  29. 29.
    T. Hiasa, K. Kimura, H. Onishi, Phys. Chem. Chem. Phys. 14, 8419 (2012)Google Scholar
  30. 30.
    T. Hiasa, K. Kimura, H. Onishi, Coll. Surf. A 396, 203 (2012)Google Scholar
  31. 31.
    T. Hiasa, K. Kimura, H. Onishi, J. Phys. Chem. C 116, 26475 (2012)Google Scholar
  32. 32.
    R. Nishioka, T. Hiasa, K. Kimura, H. Onishi, J. Phys. Chem. C 117, 2939 (2013)Google Scholar
  33. 33.
    T. Sugihara, I. Hayashi, H. Onishi, K. Kimura, A. Tamura, Chem. Phys. 419, 74 (2013)ADSGoogle Scholar
  34. 34.
    T. Hiasa, H. Onishi, Langmuir 29, 5801 (2013)Google Scholar
  35. 35.
    T. Hiasa, K. Kenjiro, H. Onishi, J. Phys. Chem. C 117, 5730 (2013)Google Scholar
  36. 36.
    M. Watkins, A.L. Shluger, Phys. Rev. Lett. 105, 196101 (2010)ADSGoogle Scholar
  37. 37.
    M. Harada, M. Tsukada, Phys. Rev. B 80, 035414 (2010)ADSGoogle Scholar
  38. 38.
    M. Tsukada, N. Watanabe, M. Harada, K. Tagami, J. Vac. Sci. Technol. B 28, C4C1 (2010)Google Scholar
  39. 39.
    M. Watkins, M.L. Berkowitz, A. Shluger, Phys. Chem. Chem. Phys. 13, 12584 (2011)Google Scholar
  40. 40.
    M. Watkins, B. Reischl, J. Chem. Phys. 138, 154703 (2013)ADSGoogle Scholar
  41. 41.
    B. Reischl, M. Watkins, A. S. Foster, J. Chem. Theory Comput. 9, 600 (2013)Google Scholar
  42. 42.
    S.P. Jarvis, A. Oral, T.P. Weihs, J.B. Pethica, Rev. Sci. Instrum. 64, 3515 (1993)ADSGoogle Scholar
  43. 43.
    N. Umeda, S. Ishizaki, H. Uwai, J. Vac. Sci. Technol. B 9, 1318 (1991)Google Scholar
  44. 44.
    Y. Martin, C.C. Williams, H.K. Wickramasinghe, J. Appl. Phys. 61, 4723 (1987)ADSGoogle Scholar
  45. 45.
    S. Morita, R. Wiesendanger, F.J. Giessibl (eds.), Noncontact Atomic Force Microscopy Volume 2 (Nanoscience and Technology) (Springer, Berlin, 2009)Google Scholar
  46. 46.
    H. Hölscher, S.M. Langkat, A. Schwarz, R. Wiesendanger, Appl. Phys. Lett. 81, 4428 (2002)ADSGoogle Scholar
  47. 47.
    B.J. Albers, T.C. Schwendemann, M.Z. Baykara, N. Pilet, M. Liebmann, E.I. Altman, U.D. Schwarz, Nat. Nanotech. 4, 307 (2009)ADSGoogle Scholar
  48. 48.
    M.B. Viani, T.E. Schäffer, A. Chand, M. Rief, H.E. Gaub, P.K. Hansma, J. Appl. Phys. 86, 2258 (1999)ADSGoogle Scholar
  49. 49.
    S. Hosaka, K. Etoh, A. Kikukawa, H. Koyanagi, K. Itoh, Microelectron. Eng. 46, 109 (1999)Google Scholar
  50. 50.
    T.E. Schäffer, P.K. Hansma, J. Appl. Phys. 84, 4661 (1998)ADSGoogle Scholar
  51. 51.
    T. Fukuma, K. Onishi, N. Kobayashi, A. Matsuki, H. Asakawa, Nanotechnology 23, 135706 (2012)ADSGoogle Scholar
  52. 52.
    T. Fukuma, Rev. Sci. Instrum. 80, 023707 (2009)ADSGoogle Scholar
  53. 53.
    T. Fukuma, S.P. Jarvis, Rev. Sci. Instrum. 77, 043701 (2006)ADSGoogle Scholar
  54. 54.
    K. Miyata, S. Usho, S. Yamada, S. Furuya, K. Yoshida, H. Asakawa, T. Fukuma, Rev. Sci. Instrum. 84, 043705 (2013)ADSGoogle Scholar
  55. 55.
    Y. Mitani, M. Kubo, K. Muramoto, T. Fukuma, Rev. Sci. Instrum. 80, 083705 (2009)ADSGoogle Scholar
  56. 56.
    K. Miyata, H. Asakawa, T. Fukuma, Appl. Phys. Lett. 103, 203104 (2013)ADSGoogle Scholar
  57. 57.
    H. Asakawa, K. Ikegami, M. Setou, N. Watanabe, M. Tsukada, T. Fukuma, Biophys. J. 101, 1270 (2011)ADSGoogle Scholar
  58. 58.
    J. Hendriksen, A.C. Rowat, E. Brief, Y.W. Hsueh, J.L. Thewalt, M.J. Zuckermann, J.H. Ipsen, Biophys. J. 90, 1639 (2006)ADSGoogle Scholar
  59. 59.
    T.J. McIntosh, A.D. Magid, S.A. Simon, Biochemistry 28, 17 (1989)Google Scholar
  60. 60.
    C. Mineo, G.L. James, E.J. Smart, R.G.W. Anderson, 271, 11930 (1996)Google Scholar
  61. 61.
    M.R. Vist, J.H. Davis, Biochemistry 29, 451 (1990)Google Scholar
  62. 62.
    A.M. Smondyrev, M.L. Berkowitz, Biophys. J. 771, 2075 (1999)Google Scholar
  63. 63.
    L. Miao, M. Nielsen, J. Thewalt, J.H. Ipsen, M. Bloom, M.J. Zuckermann, O.G. Mouritsen, Biophys. J. 82, 1429 (2002)Google Scholar
  64. 64.
    E. Nogales, S.G. Wolf, K.H. Downing, Nature 391, 199 (1998)ADSGoogle Scholar
  65. 65.
    Y. Kimura, N. Kurabe, K. Ikegami, K. Tsutsumi, Y. Konishi, O.I. Kaplan, H. Kunitomo, Y. Iino, O.E. Blacque, M. Setou 285, 22934 (2010)Google Scholar
  66. 66.
    N. Senguttuvan, M. Aoshima, K. Sumiya, H. Ishibashi, J. Cryst. Growth 280, 462 (2005)ADSGoogle Scholar
  67. 67.
    I. Nicoara, M. Stef, A. Pruna, J. Cryst. Growth 310, 1470 (2008)ADSGoogle Scholar
  68. 68.
    S. Wakahara, Y. Furuya, T. Yanagida, Y. Yokota, J. Pejchal, M. Sugiyama, N. Kawaguchi, D. Totsuka, A. Yoshikawa, Opt. Mater. 34, 729 (2012)Google Scholar
  69. 69.
    Y. Zhang, X. Xiang, W.J. Weber, Nucl. Instr. Meth. 266, 2750 (2008)Google Scholar
  70. 70.
    L.A. Perez, G.H. Nancollas, Coll. Surf. 52, 231 (1991)Google Scholar
  71. 71.
    H. Moller, H.E.L. Madsen, J. Cryst. Growth 71, 673 (1985)ADSGoogle Scholar
  72. 72.
    T. Aoba, O. Fejerskov, Crit. Rev. Oral Biol. Med. 13, 155 (2002)Google Scholar
  73. 73.
    O. Prymak, V. Sokolova, T. Peitsch, M. Epple 6, 498 (2006)Google Scholar
  74. 74.
    S.M. Hamza, S.K. Hamdona, J. Phys. Chem. 95, 3149 (1991)Google Scholar
  75. 75.
    Z. Amjad, Langmuir 9, 597 (1993)Google Scholar
  76. 76.
    C.H. de Vreugd, J.H. ter Horst, P.F.M. Durville, G.J. Witkamp, G.M. van Rosmalen, Coll. Surf. A 154, 259 (1999)Google Scholar
  77. 77.
    C.Y. Tai, J. Cryst. Growth 206, 109 (1999)ADSGoogle Scholar
  78. 78.
    C.Y. Tai, P.C. Chen, T.M. Tsao, J. Cryst. Growth 290, 576 (2006)Google Scholar
  79. 79.
    J.J. Eksteen, M. Pelser, M.S. Onyango, L. Lorenzen, C. Aldrich, G.A. Georgalli, Hydrometallurgy 91, 104 (2008)Google Scholar
  80. 80.
    P.E. Hillner, S. Manne, P.K. Hansma, A.J. Gratz, Faraday Discuss. 95, 191 (1993)ADSGoogle Scholar
  81. 81.
    D. Bosbach, G. Jordan, W. Rammensee, Eur. J. Mineral. 7, 267 (1995)Google Scholar
  82. 82.
    G. Jordan, W. Rammensee, Surf. Sci. 371, 371 (1997)ADSGoogle Scholar
  83. 83.
    M.H. Jr., A.F. White (eds.), Review in Mineralogy: Mineral Water Interface Geochemicstry (Mineralogical Society of America, 1990)Google Scholar
  84. 84.
    E.S. Boek, P.V. Coveney, N.T. Skipper, J. Am. Chem. Soc. 117, 12608 (1995)Google Scholar
  85. 85.
    S. Karaborni, B. Smit, W. Heidug, J. Urai, E. van Oort, Science 271, 1102 (1996)ADSGoogle Scholar
  86. 86.
    G.R. Edwards, L.F. Evans, A.F. Zipper, Trans. Faraday Soc. 66, 220 (1970)Google Scholar
  87. 87.
    J.L. Caslavsky, K. Vedam, J. Appl. Phys. 42, 516 (1971)ADSGoogle Scholar
  88. 88.
    Y. Leng, P.T. Cummings, J. Chem. Phys. 124, 074711 (2006)ADSGoogle Scholar
  89. 89.
    G. Sposito, R. Prost, Chem. Rev. 82, 553 (1982)Google Scholar
  90. 90.
    M. Odelius, M. Bernasconi, M. Parrinello, Phys. Rev. Lett. 78, 2855 (1997)ADSGoogle Scholar
  91. 91.
    P.B. Miranda, L. Xu, Y.R. Shen, M. Salmeron, Phys. Rev. Lett. 81, 5876 (1998)ADSGoogle Scholar
  92. 92.
    R. Bergman, J. Swenson, Nature 403, 283 (2000)ADSGoogle Scholar
  93. 93.
    J. Swenson, R. Bergman, W. Howells, J. Chem. Phys. 113, 2873 (2000)ADSGoogle Scholar
  94. 94.
    L. Cheng, P. Fenter, K.L. Nagy, M.L. Schlegel, N.C. Sturchio, Phys. Rev. Lett. 87, 156103 (2001)ADSGoogle Scholar
  95. 95.
    S.H. Park, G. Sposito, Phys. Rev. Lett. 89, 085501 (2002)ADSGoogle Scholar
  96. 96.
    J.N. Israelachvili, G.E. Adams, Nature 262, 774 (1976)ADSGoogle Scholar
  97. 97.
    F.J. Giessibl, S. Hembacher, H. Bielefeldt, J. Mannhart, Science 289, 422 (2000)ADSGoogle Scholar
  98. 98.
    M. Ge, J.H. Freed, Biophys. J. 85, 4023 (2003)Google Scholar
  99. 99.
    P. Ball, Chem. Rev. 108, 74 (2008)Google Scholar
  100. 100.
    Y. Levy, J.N. Onuchic, Annu. Rev. Biophys. Biomol. Struct. 35, 389 (2006)Google Scholar
  101. 101.
    J.F. Nagle, S. Tristram-Nagle, Biochim. Biophys. Acta 1469, 159 (2000)Google Scholar
  102. 102.
    J. Milhaud, Biochim. Biophys. Acta 1663, 19 (2004)Google Scholar
  103. 103.
    E. Márazková, P. Hobza, M. Bohl, D.R. Gauger, W. Pohle, J. Phys. Chem. 109, 15126 (2005)Google Scholar
  104. 104.
    J. Sýkora, P. Kapusta, V. Fidler, M. Hof, Langmuir 18, 571 (2002)Google Scholar
  105. 105.
    M.L. Berkowitz, D.L. Bostick, S. Pandit, Chem. Rev. 106, 1527 (2006)Google Scholar
  106. 106.
    J. Cheng, S. Pautot, D.A. Weitz, X.S. Xie, Proc. Natl. Acad. Sci. USA 100, 9826 (2003)ADSGoogle Scholar
  107. 107.
    M. Pasenkiewicz-Gierula, Y. Takaoka, H. Miyagawa, K. Kitamura, A. Kusumi, J. Phys. Chem. A 101, 3677 (1997)Google Scholar
  108. 108.
    J. Fitter, R.E. Lechner, N.A. Dencher, J. Phys. Chem. 103, 8036 (1999)Google Scholar
  109. 109.
    W. Zhao, D.E. Moilanen, E.E. Fenn, M.D. Fayer, Biophys. J. 130, 13927 (2008)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  1. 1.Division of Electrical Engineering and Computer ScienceKanazawa UniversityKanazawaJapan

Personalised recommendations