Advertisement

3D Force Field Spectroscopy

  • Mehmet Z. Baykara
  • Udo D. Schwarz
Chapter
Part of the NanoScience and Technology book series (NANO)

Abstract

With recent advances in instrumentation and experimental methodology, noncontact atomic force microscopy is now being frequently used to measure the atomic-scale interactions acting between a sharp probe tip and surfaces of interest as a function of three spatial dimensions, via the method of three-dimensional atomic force microscopy (3D-AFM). In this chapter, we discuss the different data collection and processing approaches taken towards this goal while highlighting the associated advantages and disadvantages in terms of correct interpretation of results. Additionally, common sources of artifacts in 3D-AFM measurements, including thermal drift, piezo nonlinearities, and tip-related issues such as asymmetry and elasticity are considered. Finally, the combination of 3D-AFM with simultaneous scanning tunneling microscopy (STM) is illustrated on surface-oxidized Cu(100). We conclude the chapter by an outlook regarding the future development of the 3D-AFM method.

Keywords

Scanning Tunneling Microscope Drift Rate Scanning Probe Microscopy Tunneling Current Highly Orient Pyrolytic Graphite 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

The authors would like to thank Eric I. Altman, Omur E. Dagdeviren, Harry Mönig, Rubén Pérez, Lucia Rodrigo, Todd C. Schwendemann, Milica Todorović, Berkin Uluutku and Özhan Ünverdi for their invaluable contributions to the experimental and numerical studies presented in this chapter. Financial support from the National Science Foundation through the Yale Materials Research Science and Engineering Center (grant No. MRSEC DMR-1119826) and the Materials World Network program (grant No. MWN DMR-0806893) as well as the US Department of Energy (Basic Energy Sciences grant No. DE-FG02-06ER15834) are gratefully acknowledged. M.Z.B gratefully acknowledges support from the Turkish Academy of Sciences via the TÜBA-GEBİP program and the Marie Curie Actions of the European Commission’s FP7 Program in the form of a Career Integration Grant (grant No. PCIG12-GA-2012-333843).

References

  1. 1.
    G. Binnig, H. Rohrer, Helvetica Physica Acta 55, 726 (1982)Google Scholar
  2. 2.
    G. Binnig, C.F. Quate, C. Gerber, Phys. Rev. Lett. 56, 930 (1986)CrossRefADSGoogle Scholar
  3. 3.
    P.J. Eaton, P. West, Atomic Force Microscopy (Oxford University Press, Oxford, 2010)CrossRefGoogle Scholar
  4. 4.
    F.J. Giessibl, Science 267, 68 (1995)CrossRefADSGoogle Scholar
  5. 5.
    Y. Sugawara, M. Ohta, H. Ueyama, S. Morita, Science 270, 1646 (1995)CrossRefADSGoogle Scholar
  6. 6.
    S. Morita, R. Wiesendanger, E. Meyer, Noncontact Atomic Force Microscopy (Springer, Berlin, 2002)CrossRefGoogle Scholar
  7. 7.
    S. Morita, F.J. Giessibl, R. Wiesendanger, Noncontact Atomic Force Microscopy (Springer, Berlin, 2009)CrossRefGoogle Scholar
  8. 8.
    T.R. Albrecht, P. Grutter, D. Horne, D. Rugar, J. Appl. Phys. 69, 668 (1991)CrossRefADSGoogle Scholar
  9. 9.
    M. Bammerlin, R. Luthi, E. Meyer, A. Baratoff, J. Lu, M. Guggisberg et al., Appl. Phys. A 66, S293 (1998)CrossRefADSGoogle Scholar
  10. 10.
    M. Reichling, C. Barth, Phys. Rev. Lett. 83, 768 (1999)CrossRefADSGoogle Scholar
  11. 11.
    R. Hoffmann, D. Weiner, A. Schirmeisen, A.S. Foster, Phys. Rev. B 80, 115426 (2009)CrossRefADSGoogle Scholar
  12. 12.
    C. Loppacher, M. Bammerlin, M. Guggisberg, S. Schar, R. Bennewitz, A. Baratoff et al., Phys. Rev. B 62, 16944 (2000)CrossRefADSGoogle Scholar
  13. 13.
    V. Caciuc, H. Hölscher, D. Weiner, H. Fuchs, A. Schirmeisen, Phys. Rev. B 77, 045411 (2008)Google Scholar
  14. 14.
    T. Konig, G.H. Simon, H.P. Rust, M. Heyde, Appl. Phys. Lett. 95, 083116 (2009)CrossRefADSGoogle Scholar
  15. 15.
    J.V. Lauritsen, M. Reichling, J Phys.: Condens. Matter 22, 263001 (2010)Google Scholar
  16. 16.
    M.P. Boneschanscher, J. van der Lit, Z.X. Sun, I. Swart, P. Liljeroth, D. Vanmaekelbergh, ACS Nano 6, 10216 (2012)CrossRefGoogle Scholar
  17. 17.
    Y. Dedkov, E. Voloshina, Phys. Chem. Chem. Phys. 16, 3894 (2014)CrossRefGoogle Scholar
  18. 18.
    Z. Majzik et al., J. Phys. Condens. Matter 25, 225301 (2013)CrossRefADSGoogle Scholar
  19. 19.
    H. Hölscher, A. Schwarz, W. Allers, U.D. Schwarz, R. Wiesendanger, Phys. Rev. B 61, 12678 (2000)Google Scholar
  20. 20.
    M.A. Lantz, H.J. Hug, R. Hoffmann, P.J.A. van Schendel, P. Kappenberger, S. Martin et al., Science 291, 2580 (2001)CrossRefADSGoogle Scholar
  21. 21.
    Y. Sugimoto, P. Pou, M. Abe, P. Jelinek, R. Perez, S. Morita et al., Nature 446, 64 (2007)CrossRefADSGoogle Scholar
  22. 22.
    J.E. Sader, S.P. Jarvis, Appl. Phys. Lett. 84, 1801 (2004)CrossRefADSGoogle Scholar
  23. 23.
    B.J. Albers, M. Liebmann, T.C. Schwendemann, M.Z. Baykara, M. Heyde, M. Salmeron et al., Rev. Sci. Instrum. 79, 033704 (2008)CrossRefADSGoogle Scholar
  24. 24.
    M. Abe, Y. Sugimoto, O. Custance, S. Morita, Appl. Phys. Lett. 87, 173503 (2005)CrossRefADSGoogle Scholar
  25. 25.
    M. Abe, Y. Sugimoto, T. Namikawa, K. Morita, N. Oyabu, S. Morita, Appl. Phys. Lett. 90, 203103 (2007)CrossRefADSGoogle Scholar
  26. 26.
    B.J. Albers, T.C. Schwendemann, M.Z. Baykara, N. Pilet, M. Liebmann, E.I. Altman et al., Nat. Nanotechnol. 4, 307 (2009)CrossRefADSGoogle Scholar
  27. 27.
    L. Gross, F. Mohn, N. Moll, P. Liljeroth, G. Meyer, Science 325, 1110 (2009)CrossRefADSGoogle Scholar
  28. 28.
    M.Z. Baykara, T.C. Schwendemann, E.I. Altman, U.D. Schwarz, Adv. Mater. 22, 2838 (2010)CrossRefGoogle Scholar
  29. 29.
    B. Such, T. Glatzel, S. Kawai, S. Koch, E. Meyer, J. Vacuum Sci. Technol. B 28, C4B1–C4B5 (2010)Google Scholar
  30. 30.
    S. Kawai, T. Glatzel, S. Koch, A. Baratoff, E. Meyer, Phys. Rev. B 83, 035421 (2011)CrossRefADSGoogle Scholar
  31. 31.
    S. Fremy, S. Kawai, R. Pawlak, T. Glatzel, A. Baratoff, E. Meyer, Nanotechnology 23, 055401 (2012)CrossRefADSGoogle Scholar
  32. 32.
    B. Such, T. Glatzel, S. Kawai, E. Meyer, R. Turansky, J. Brndiar et al., Nanotechnology 23, 045705 (2012)CrossRefADSGoogle Scholar
  33. 33.
    R. Pawlak, S. Kawai, S. Fremy, T. Glatzel, E. Meyer, ACS Nano 5, 6349 (2011)CrossRefGoogle Scholar
  34. 34.
    Y. Sugimoto, K. Ueda, M. Abe, S. Morita, J. Phys.: Condens. Matter 24, 084008 (2012)Google Scholar
  35. 35.
    R. Pawlak, S. Kawai, S. Fremy, T. Glatzel, E. Meyer, J. Phys.: Condens. Matter 24(8), 084005 (2012)Google Scholar
  36. 36.
    M.Z. Baykara, M. Todorovic, H. Monig, T.C. Schwendemann, O. Unverdi, L. Rodrigo et al., Phys. Rev. B 87, 155414 (2013)CrossRefADSGoogle Scholar
  37. 37.
    A.M. Sweetman et al., Nat. Commun. 5, 7 (2014)CrossRefGoogle Scholar
  38. 38.
    T. Fukuma, Y. Ueda, S. Yoshioka, H. Asakawa, Phys. Rev. Lett. 104, 016101 (2010)CrossRefADSGoogle Scholar
  39. 39.
    H. Asakawa, S. Yoshioka, K. Nishimura, T. Fukuma, ACS Nano 6, 9013 (2012)CrossRefGoogle Scholar
  40. 40.
    E.T. Herruzo, H. Asakawa, T. Fukuma, R. Garcia, Nanoscale 5, 2678 (2013)CrossRefADSGoogle Scholar
  41. 41.
    M.Z. Baykara, O.E. Dagdeviren, T.C. Schwendemann, H. Monig, E.I. Altman, U.D. Schwarz, Beilstein J. Nanotechnol. 3, 637 (2012)CrossRefGoogle Scholar
  42. 42.
    B. Uluutku, M.Z. Baykara, J. Vacuum Sci. Technol. B 31, 041801 (2013)CrossRefADSGoogle Scholar
  43. 43.
    B.J. Albers, T.C. Schwendemann, M.Z. Baykara, N. Pilet, M. Liebmann, E.I. Altman et al., Nanotechnology 20, 264002 (2009)CrossRefADSGoogle Scholar
  44. 44.
    S.O.R. Moheimani, Rev. Sci. Instrum. 79, 071101 (2008)CrossRefADSGoogle Scholar
  45. 45.
    H.J. Hug, B. Stiefel, P.J.A. van Schendel, A. Moser, S. Martin, H.J. Guntherodt, Rev. Sci. Instrum. 70, 3625 (1999)CrossRefADSGoogle Scholar
  46. 46.
    C.Z. Cai, X.Y. Chen, Q.Q. Shu, X.L. Zheng, Rev. Sci. Instrum. 63, 5649 (1992)CrossRefADSGoogle Scholar
  47. 47.
    W. Allers, A. Schwarz, U.D. Schwarz, R. Wiesendanger, Rev. Sci. Instrum. 69, 221 (1998)CrossRefADSGoogle Scholar
  48. 48.
    W.A. Hofer, A.S. Foster, A.L. Shluger, Rev. Mod. Phys. 75, 1287 (2003)CrossRefADSGoogle Scholar
  49. 49.
    N. Oyabu, P. Pou, Y. Sugimoto, P. Jelinek, M. Abe, S. Morita et al., Phys. Rev. Lett. 96, 106101 (2006)CrossRefADSGoogle Scholar
  50. 50.
    G.H. Enevoldsen, H.P. Pinto, A.S. Foster, M.C.R. Jensen, A. Kuhnle, M. Reichling et al., Phys. Rev. B 78, 045416 (2008)CrossRefADSGoogle Scholar
  51. 51.
    P. Pou, S.A. Ghasemi, P. Jelinek, T. Lenosky, S. Goedecker, R. Perez, Nanotechnology 20, 264015 (2009)CrossRefADSGoogle Scholar
  52. 52.
    H. Hölscher, W. Allers, U.D. Schwarz, A. Schwarz, R. Wiesendanger, Appl. Phys. A 72, S35 (2001)Google Scholar
  53. 53.
    S. Kawai, T. Glatzel, S. Koch, B. Such, A. Baratoff, E. Meyer, Phys. Rev. B 81, 085420 (2010)CrossRefADSGoogle Scholar
  54. 54.
    J. Welker, A.J. Weymouth, F.J. Giessibl, ACS Nano 7, 7377 (2013)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  1. 1.Department of Mechanical Engineering and UNAM-Institute of Materials Science and NanotechnologyBilkent UniversityAnkaraTurkey
  2. 2.Center for Research on Interface Structures and Phenomena (CRISP), Department of Mechanical Engineering and Materials Science, Department of Chemical and Environmental EngineeringYale UniversityNew HavenUSA

Personalised recommendations