Advertisement

Simulating Solid-Liquid Interfaces in Atomic Force Microscopy

  • Bernhard Reischl
  • Filippo Federici Canova
  • Peter Spijker
  • Matt Watkins
  • Adam FosterEmail author
Chapter
  • 2.3k Downloads
Part of the NanoScience and Technology book series (NANO)

Abstract

In this chapter, we will cover the main approaches taken to model AFM in liquids in a variety of different systems, discussing the advantages and problems of different methods, outlining the main issues to take into account in general, while also attempting to build a perspective for the future of the field. We hope this will provide a fundamental platform of understanding for future Atomic Force Microscopy studies of solid-liquid interfaces at the nanoscale.

Keywords

Atomic Force Microscopy Hydration Layer Alkali Halide Free Energy Calculation Surface Slab 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    G. Kada, F. Kienberger, P. Hinterdorfer, Atomic force microscopy in bionanotechnology. Nano Today 3, 12–19 (2008)CrossRefGoogle Scholar
  2. 2.
    D.J. Müller, Y.F. Dufrêne, Atomic force microscopy as a multifunctional molecular toolbox in nanobiotechnology. Nat. Nanotechnol. 3(5), 261–269 (2008)CrossRefGoogle Scholar
  3. 3.
    H.J. Güntherodt, D. Anselmetti, E. Meyer, Forces in Scanning Probe Methods (Kluwer, Dordrecht, 1995)Google Scholar
  4. 4.
    S. Morita, R. Wiesendanger, E. Meyer, Noncontact Atomic Force Microscopy (Springer, Berlin, 2002)CrossRefGoogle Scholar
  5. 5.
    F.J. Giessibl, Atomic-force microscopy in ultrahigh-vacuum. Jpn. J. Appl. Phys. 33(6B), 3726–3734 (1994)CrossRefADSGoogle Scholar
  6. 6.
    A.L. Shluger, A.I. Livshits, A.S. Foster, C.R.A. Catlow, Models of image contrast in scanning force microscopy on insulators. J. Phys. Condens. Matter 11(26), R295–R322 (1999)CrossRefADSGoogle Scholar
  7. 7.
    D.A. Bonnell, Probe Microscopy and Spectroscopy: Theory and Applications (Wiley, New York, 2000)Google Scholar
  8. 8.
    F.J. Giessibl, Atomic resolution of the silicon (111)-(7\(\times \)7) surface by atomic force microscopy. Science 267(5194), 68–71 (1995)CrossRefADSGoogle Scholar
  9. 9.
    F. Giessibl, Advances in atomic force microscopy. Rev. Mod. Phys. 75, 949–983 (2003)CrossRefADSGoogle Scholar
  10. 10.
    Y. Sugimoto, P. Pou, M. Abe, P. Jelinek, R. Perez, S. Morita, O. Custance, Chemical identification of individual surface atoms by atomic force microscopy. Nature 446(7131), 64–67 (2007)CrossRefADSGoogle Scholar
  11. 11.
    Y. Sugimoto, P. Pou, O. Custance, P. Jelinek, M. Abe, R. Perez, S. Morita, Complex patterning by vertical interchange atom manipulation using atomic force microscopy. Science 322(5900), 413–417 (2008)CrossRefADSGoogle Scholar
  12. 12.
    L. Gross, F. Mohn, N. Moll, P. Liljeroth, G. Meyer, The chemical structure of a molecule resolved by atomic force microscopy. Science 325(5944), 1110–1114 (2009)CrossRefADSGoogle Scholar
  13. 13.
    L. Gross, F. Mohn, N. Moll, B. Schuler, A. Criado, E. Guitian, D. Pena, A. Gourdon, G. Meyer, Bond-order discrimination by atomic force microscopy. Science 337(6100), 1326–1329 (2012)Google Scholar
  14. 14.
    G. Binnig, C.F. Quate, C. Gerber, Atomic force microscope. Phys. Rev. Lett. 56(9), 930–933 (1986)CrossRefADSGoogle Scholar
  15. 15.
    G. Binnig, C. Gerber, E. Stoll, T.R. Albrecht, C.F. Quate, Atomic resolution with atomic force microscope. Europhys. Lett. 3(12), 1281–1286 (1987)CrossRefADSGoogle Scholar
  16. 16.
    F. Ohnesorge, G. Binnig, True atomic resolution by atomic force microscopy through repulsive and attractive forces. Science 260(5113), 1451 (1993)CrossRefADSGoogle Scholar
  17. 17.
    Y. Martin, C.C. Williams, H.K. Wickramasinghe, Atomic force microscope-force mapping and profiling on a sub 100-Å scale. J. Appl. Phys. 61(10), 4723 (1987)CrossRefADSGoogle Scholar
  18. 18.
    F.J. Giessibl, H. Bielefeldt, S. Hembacher, J. Mannhart, Calculation of the optimal imaging parameters for frequency modulation atomic force microscopy. Appl. Surf. Sci. 140, 352–357 (1999)CrossRefADSGoogle Scholar
  19. 19.
    T. Uchihashi, M.J. Higgins, S. Yasuda, S.P. Jarvis, S. Akita, Y. Nakayama, J.E. Sader, Quantitative force measurements in liquid using frequency modulation atomic force microscopy. Appl. Phys. Lett. 85(16), 3575 (2004)CrossRefADSGoogle Scholar
  20. 20.
    T. Fukuma, K. Kobayashi, K. Matsushige, H. Yamada, True molecular resolution in liquid by frequency-modulation atomic force microscopy. Appl. Phys. Lett. 86(19), 193108 (2005)CrossRefADSGoogle Scholar
  21. 21.
    T. Fukuma, K. Kobayashi, K. Matsushige, H. Yamada, True atomic resolution in liquid by frequency-modulation atomic force microscopy. Appl. Phys. Lett. 87(3), 034101 (2005)CrossRefADSGoogle Scholar
  22. 22.
    T. Fukuma, M. Higgins, S. Jarvis, Direct imaging of lipid-ion network formation under physiological conditions by frequency modulation atomic force microscopy. Phys. Rev. Lett. 98(10), 106101 (2007)CrossRefADSGoogle Scholar
  23. 23.
    S. Rode, N. Oyabu, K. Kobayashi, H. Yamada, A. Kühnle, True atomic-resolution imaging of (\(10\bar{1}4\)) calcite in aqueous solution by frequency modulation atomic force microscopy. Langmuir 25(5), 2850–2853 (2009)CrossRefGoogle Scholar
  24. 24.
    T. Fukuma, Water distribution at solid/liquid interfaces visualized by frequency modulation atomic force microscopy. Sci. Tech. Adv. Mater. 11(3), 033003 (2010)CrossRefMathSciNetGoogle Scholar
  25. 25.
    B.W. Hoogenboom, H.J. Hug, Y. Pellmont, S. Martin, P.L.T.M. Frederix, D. Fotiadis, A. Engel, Quantitative dynamic-mode scanning force microscopy in liquid. Appl. Phys. Lett. 88(19), 193109 (2006)Google Scholar
  26. 26.
    T. Fukuma, K. Onishi, N. Kobayashi, A. Matsuki, H. Asakawa, Atomic-resolution imaging in liquid by frequency modulation atomic force microscopy using small cantilevers with megahertz-order resonance frequencies. Nanotechnology 23, 135706 (2012)CrossRefADSGoogle Scholar
  27. 27.
    W.A. Hofer, A.S. Foster, A.L. Shluger, Theories of scanning probe microscopy at the atomic scale. Rev. Mod. Phys. 75, 1287–1331 (2003)CrossRefADSGoogle Scholar
  28. 28.
    A.S. Foster, W.A. Hofer, Scanning Probe Microscopes: Atomic Scale Engineering by Forces and Currents (Springer, New York, 2006)Google Scholar
  29. 29.
    C. Barth, A.S. Foster, C.R. Henry, A.L. Shluger, Recent trends in surface characterization and chemistry with high-resolution scanning force methods. Adv. Mater. 23(4), 477–501 (2011)Google Scholar
  30. 30.
    R. Perez, M. Payne, I. Stich, K. Terakura, Role of covalent tip-surface interactions in noncontact atomic force microscopy on reactive surfaces. Phys. Rev. Lett. 78(4), 678–681 (1997)CrossRefADSGoogle Scholar
  31. 31.
    I. Stich, J. Tobik, R. Perez, K. Terakura, S. Ke, Tip-surface interactions in noncontact atomic force microscopy on reactive surfaces. Prog. Surf. Sci. 64(3–8), 179–191 (2000)CrossRefADSGoogle Scholar
  32. 32.
    N. Sasaki, H. Aizawa, M. Tsukada, Theoretical simulation of noncontact AFM images of Si(111) 33-Ag surface based on Fourier expansion method. Appl. Surf. Sci. 157(4), 367–372 (2000)CrossRefADSGoogle Scholar
  33. 33.
    A. Foster, A. Gal, J. Gale, Y. Lee, R. Nieminen, A. Shluger, Interaction of silicon dangling bonds with insulating surfaces. Phys. Rev. Lett. 92(3), 036101 (2004)CrossRefADSGoogle Scholar
  34. 34.
    N. Oyabu, P. Pou, Y. Sugimoto, P. Jelinek, M. Abe, S. Morita, R. Perez, O. Custance, Single atomic contact adhesion and dissipation in dynamic force microscopy. Phys. Rev. Lett. 96(10), 106101 (2006)CrossRefADSGoogle Scholar
  35. 35.
    O. Custance, R. Perez, S. Morita, Atomic force microscopy as a tool for atom manipulation. Nat. Nanotechnol. 4(12), 803–810 (2009)CrossRefADSGoogle Scholar
  36. 36.
    M. Rasmussen, A. Foster, B. Hinnemann, F. Canova, S. Helveg, K. Meinander, N. Martin, J. Knudsen, A. Vlad, E. Lundgren, A. Stierle, F. Besenbacher, J. Lauritsen, Stable cation inversion at the MGAl\(_{2}\)O\(_{4}\)(100) surface. Phys. Rev. Lett. 107(3), 036102 (2011)Google Scholar
  37. 37.
    G. Teobaldi, K. Lämmle, T. Trevethan, M. Watkins, A. Schwarz, R. Wiesendanger, A.L. Shluger, Chemical resolution at ionic crystal surfaces using dynamic atomic force microscopy with metallic tips. Phys. Rev. Lett. 106, 216102 (2011)Google Scholar
  38. 38.
    S. Kawai, A.S. Foster, F.F. Canova, H. Onodera, S.i. Kitamura, E. Meyer, Atom manipulation on an insulating surface at room temperature, Nat. Commun. 5, 4403 (2014)Google Scholar
  39. 39.
    M. Ondráček, P. Pou, V. Rozsíval, C. Gonzalez, P. Jelinek, R. Perez, Forces and currents in carbon nanostructures: are we imaging atoms? Phys. Rev. Lett. 106(17), 176101 (2011)CrossRefADSGoogle Scholar
  40. 40.
    J. Bamidele, S.H. Lee, Y. Kinoshita, R. Turanský, Y. Naitoh, Y.J. Li, Y. Sugawara, I. Stich, L. Kantorovich, Vertical atomic manipulation with dynamic atomic-force microscopy without tip change via a multi-step mechanism. Nat. Commun. 5, 4476 (2014)Google Scholar
  41. 41.
    A.M. Sweetman, S.P. Jarvis, H. Sang, I. Lekkas, P. Rahe, Y. Wang, J. Wang, N.R. Champness, L. Kantorovich, P. Moriarty, Mapping the force field of a hydrogen-bonded assembly. Nat. Commun. 5, 3931 (2014)CrossRefADSGoogle Scholar
  42. 42.
    N. Moll, L. Gross, F. Mohn, A. Curioni, G. Meyer, A simple model of molecular imaging with noncontact atomic force microscopy. New J. Phys. 14(8), 083023 (2012)CrossRefADSGoogle Scholar
  43. 43.
    D.Z. Gao, J. Grenz, M.B. Watkins, F. Federici, Canova, A. Schwarz, R. Wiesendanger, A.L. Shluger, Using metallic noncontact atomic force microscope tips for imaging insulators and polar molecules: tip characterization and imaging mechanisms. ACS nano 8(5), 5339–5351 (2014)Google Scholar
  44. 44.
    J.C. Chen, B. Reischl, P. Spijker, N. Holmberg, K. Laasonen, A.S. Foster, Ab initio kinetic monte carlo simulations of dissolution at the NACl-water interface. Phys. Chem. Chem. Phys. 16, 22545–22554 (2014)Google Scholar
  45. 45.
    M.P. Allen, D.J. Tildesley, Computer Simulation of Liquids (Oxford University Press, Oxford, 1987)zbMATHGoogle Scholar
  46. 46.
    D. Frenkel, B. Smit, Understanding Molecular Simulation: From Algorithms to Applications, 2nd edn. (Computational Science, Academic Press, San Diego, 2002)Google Scholar
  47. 47.
    M. Watkins, A.L. Shluger, Mechanism of contrast formation in atomic force microscopy in water. Phys. Rev. Lett. 105(19), 196101 (2010)CrossRefADSGoogle Scholar
  48. 48.
    K. Kimura, S. Ido, N. Oyabu, K. Kobayashi, Y. Hirata, T. Imai, H. Yamada, Visualizing water molecule distribution by atomic force microscopy. J. Chem. Phys. 132(19), 194705 (2010)CrossRefADSGoogle Scholar
  49. 49.
    M. Harada, M. Tsukada, Tip-sample interaction force mediated by water molecules for AFM in water: three-dimensional reference interaction site model theory. Phys. Rev. B 80(3), 035414 (2010)CrossRefADSGoogle Scholar
  50. 50.
    M. Tsukada, N. Watanabe, M. Harada, K. Tagami, Theoretical simulation of noncontact atomic force microscopy in liquids. J. Vac. Sci. Tech. B. 28(3), C4C1–C4C4 (2010)Google Scholar
  51. 51.
    B. Reischl, M. Watkins, A.S. Foster, Free energy approaches for modeling atomic force microscopy in liquids. J. Chem. Theory Comput. 9(1), 600–608 (2013)CrossRefGoogle Scholar
  52. 52.
    D. Argyris, A. Phan, A. Striolo, P.D. Ashby, Hydration structure at the \(\alpha \)-Al\({}_2\)O\({}_3\)(0001) surface: insights from experimental atomic force spectroscopic data and atomistic molecular dynamics simulations. J. Phys. Chem. C 117(20), 10433–10444 (2013)Google Scholar
  53. 53.
    M. Watkins, B. Reischl, A simple approximation for forces exerted on an AFM tip in liquid. J. Chem. Phys. 138(15), 154703 (2013)CrossRefADSGoogle Scholar
  54. 54.
    K.i. Amano, K. Suzuki, T. Fukuma, O. Takahashi, H. Onishi, The relationship between local liquid density and force applied on a tip of atomic force microscope: a theoretical analysis for simple liquids. J. Chem. Phys. 139(22), 224710 (2013)Google Scholar
  55. 55.
    T. Fukuma, Y. Ueda, S. Yoshioka, H. Asakawa, Atomic-scale distribution of water molecules at the mica-water interface visualized by three-dimensional scanning force microscopy. Phys. Rev. Lett. 104(1), 016101 (2010)CrossRefADSGoogle Scholar
  56. 56.
    T. Hiasa, K. Kimura, H. Onishi, M. Ohta, K. Watanabe, R. Kokawa, N. Oyabu, K. Kobayashi, H. Yamada, Aqueous solution structure over \(\alpha \)-Al\({}_2\)O\({}_3\)(\(01\bar{1}2\)) probed by frequency-modulation atomic force microscopy. J. Phys. Chem. C 114(49), 21423–21426 (2010)Google Scholar
  57. 57.
    J.G. Catalano, C. Park, Z. Zhang, P. Fenter, Termination and water adsorption at the \(\alpha \)-Al\({}_2\)O\({}_3\) (012)-aqueous solution interface. Langmuir 22(10), 4668–4673 (2006)Google Scholar
  58. 58.
    L. Cheng, P. Fenter, K.L. Nagy, M.L. Schlegel, N.C. Sturchio, Molecular-scale density oscillations in water adjacent to a mica surface. Phys. Rev. Lett. 87, 156103 (2001)CrossRefADSGoogle Scholar
  59. 59.
    J.D. Eaves, J.J. Loparo, C.J. Fecko, S.T. Roberts, A. Tokmakoff, P.L. Geissler, Hydrogen bonds in liquid water are broken only fleetingly. Proc. Natl. Acad. Sci. USA 102(37), 13019–13022 (2005)CrossRefADSGoogle Scholar
  60. 60.
    M. Watkins, M.L. Berkowitz, A.L. Shluger, Role of water in atomic resolution AFM in solutions. Phys. Chem. Chem. Phys. 13(27), 12584–12594 (2011)CrossRefGoogle Scholar
  61. 61.
    K. Voïtchovsky, J.J. Kuna, S.A. Contera, E. Tosatti, F. Stellacci, Direct mapping of the solid-liquid adhesion energy with subnanometre resolution. Nat. Nanotechnol. 5(6), 401–405 (2010)CrossRefADSGoogle Scholar
  62. 62.
    D. Chandler, Introduction to Modern Statistical Mechanics (Oxford University Press, New York, 1987)Google Scholar
  63. 63.
    G.M. Torrie, J.P. Valleau, Monte Carlo free energy estimates using non-Boltzmann sampling: application to the sub-critical Lennard-Jones fluid. Chem. Phys. Lett. 28, 578–581 (1974)CrossRefADSGoogle Scholar
  64. 64.
    S. Kumar, D. Bouzida, R.H. Swendsen, P.A. Kollman, J.M. Rosenberg, The weighted histogram analysis method for free-energy calculations on biomolecules. I. The method. J. Comput. Chem. 13, 1011–1021 (1992)CrossRefGoogle Scholar
  65. 65.
    R.W. Zwanzig, Statistical mechanical theory of transport processes. VII. The coefficient of thermal conductivity of monatomic liquids. J. Chem. Phys. 22(8), 1420–1426 (1954)CrossRefADSMathSciNetGoogle Scholar
  66. 66.
    A.D. MacKerell Jr, D. Bashford, M. Bellott, R.L. Dunbrack Jr, J.D. Evanseck, M.J. Field, S. Fischer, J. Gao, H. Guo, S. Ha, D. Joseph-McCarthy, L. Kuchnir, K. Kuczera, F.T.K. Lau, C. Mattos, S. Michnick, T. Ngo, D.T. Nguyen, B. Prodhom, W.E. Reiher III, B. Roux, M. Schlenkrich, J.C. Smith, R. Stote, J. Straub, M. Watanabe, J. Wiorkiewicz-Kuczera, D. Yin, M. Karplus, All-atom empirical potential for molecular modeling and dynamics studies of proteins. J. Phys. Chem. B 102, 3586–3616 (1998)Google Scholar
  67. 67.
    W.D. Cornell, P. Cieplak, C.I. Bayly, I.R. Gould, K.M. Merz, D.M. Ferguson, D.C. Spellmeyer, T. Fox, J.W. Caldwell, P.A. Kollman, A second generation force field for the simulation of proteins, nucleic acids, and organic molecules. J. Am. Chem. Soc. 117(19), 5179–5197 (1995)CrossRefGoogle Scholar
  68. 68.
    W.L. Jorgensen, D.S. Maxwell, J. Tirado-Rives, Development and testing of the OPLS all-atom force field on conformational energetics and properties of organic liquids. J. Am. Chem. Soc. 118(45), 11225–11236 (1996)Google Scholar
  69. 69.
    R.T. Cygan, J.J. Liang, A.G. Kalinichev, Molecular models of hydroxide. oxyhydroxide, and clay phases and the development of a general force field. J. Phys. Chem. B 108, 1255–1266 (2004)Google Scholar
  70. 70.
    D.R. Heine, A.R. Rammohan, J. Balakrishnan, Atomistic simulations of the interaction between lipid bilayers and substrates 33, 391–397 (2007)Google Scholar
  71. 71.
    C.M. Payne, X. Zhao, L. Vlcek, P.T. Cummings, Molecular dynamics simulation of ss-dna translocation between copper nanoelectrodes incorporating electrode charge. Dynamics 112, 1712–1717 (2008)Google Scholar
  72. 72.
    A.A. Skelton, P. Fenter, J.D. Kubicki, D.J. Wesolowski, P.T. Cummings, Simulations of the quartz(1011)/water interface: a comparison of classical force fields. Ab initio molecular dynamics, and X-ray reflectivity experiments. J. Phys. Chem. B 115, 2076–2088 (2011)Google Scholar
  73. 73.
    S. Kang, T. Huynh, Z. Xia, Y. Zhang, H. Fang, G. Wei, R. Zhou, Hydrophobic interactions drives surface-assisted epitaxial assembly of amyloid-like. Peptides 135, 3150–3157 (2013)Google Scholar
  74. 74.
    P. Raiteri, J.D. Gale, D. Quigley, P.M. Rodger, Derivation of an accurate force-field for simulating the growth of calcium carbonate from aqueous solution: a new model for the calcite-water interface. J. Phys. Chem. C 114(13), 5997–6010 (2010)CrossRefGoogle Scholar
  75. 75.
    P. Raiteri, J.D. Gale, Water is the key to nonclassical nucleation of amorphous calcium carbonate. J. Am. Chem. Soc. 132(49), 17623–17634 (2010)CrossRefGoogle Scholar
  76. 76.
    P. Fenter, S. Kerisit, P. Raiteri, J.D. Gale, Is the calcite-water interface understood? Direct comparisons of molecular dynamics simulations with specular X-ray reflectivity data. J. Phys. Chem. C 117(10), 5028–5042 (2013)Google Scholar
  77. 77.
    B. Guillot, A reappraisal of what we have learnt during three decades of computer simulations on water. J. Mol. Liq. 101(1–3), 219–260 (2002)CrossRefGoogle Scholar
  78. 78.
    H.J.C. Berendsen, J.R. Grigera, T.P. Straatsma, The missing term in effective pair potentials. J. Phys. Chem. 91, 6269–6271 (1987)Google Scholar
  79. 79.
    K. Toukan, A. Rahman, Molecular-dynamics study of atomic motions in water. Phys. Rev. B 31, 2643–2648 (1985)Google Scholar
  80. 80.
    K.P. Jensen, W.L. Jorgensen, Halide, Ammonium, and Alkali metal ion parameters for modeling aqueous solutions. J. Chem. Theory Comput. 2, 1499–1509 (2006)CrossRefGoogle Scholar
  81. 81.
    I.S. Joung, T.E. Cheatham III, Determination of alkali and halide monovalent ion parameters for use in explicitly solvated biomolecular simulations. J. Phys. Chem. B 112, 9020–9041 (2008)Google Scholar
  82. 82.
    T. Hiasa, K. Kimura, H. Onishi, Hydration of hydrophilic thiolate monolayers visualized by atomic force microscopy. Phys. Chem. Chem. Phys. 14(23), 8419–8424 (2012)CrossRefGoogle Scholar
  83. 83.
    M. Watkins, A.L. Shluger, Properties of SiO\({}_2\) clusters in aqueous solution from first principles molecular dynamics (2013) (in preparation)Google Scholar
  84. 84.
    J.P. Cleveland, T.E. Schäffer, P.K. Hansma, Probing oscillatory hydration potentials using thermal-mechanical noise in an atomic-force microscope. Phys. Rev. B 52(12), 8692–8695 (1995)CrossRefADSGoogle Scholar
  85. 85.
    N. Kobayashi, S. Itakura, H. Asakawa, T. Fukuma, Atomic-scale processes at the fluorite-water interface visualized by frequency modulation atomic force microscopy. J. Phys. Chem. C 117(46), 24388–24396 (2013)CrossRefGoogle Scholar
  86. 86.
    C. Eun, M.L. Berkowitz, Origin of the hydration force: water-mediated interaction between two hydrophilic plates. J. Phys. Chem. B 113(40), 13222–13228 (2009)CrossRefGoogle Scholar
  87. 87.
    J. Schütte, P. Rahe, L. Tröger, S. Rode, R. Bechstein, M. Reichling, A. Kühnle, Clear signature of the (2\(\times \)1) reconstruction of calcite (\(10\bar{1}4\)). Langmuir 26(11), 8295–8300 (2010)CrossRefGoogle Scholar
  88. 88.
    H. Imada, K. Kimura, H. Onishi, Water and 2-propanol structured on calcite (104) probed by frequency-modulation atomic force microscopy. Langmuir 29(34), 10744–10751 (2013)CrossRefGoogle Scholar
  89. 89.
    J. Tracey, F. Federici Canova, O. Keisanen, A.S. Foster, Flexible and efficient virtual scanning probe microscope (2014) (in preparation)Google Scholar
  90. 90.
    M. Ricci, P. Spijker, F. Stellacci, J.F. Molinari, K. Voïtchovsky, Langmuir 29(7), 2207–2216 (2013)CrossRefGoogle Scholar
  91. 91.
    D.J. Cooke, J.A. Elliott, Atomistic simulations of calcite nanoparticles and their interaction with water. J. Chem. Phys. 127(10), 104706 (2007)CrossRefADSGoogle Scholar
  92. 92.
    T. Fukuma, N. Kobayashi, B. Reischl, P. Spijker, F. Federici Canova, K. Miyazawa, A.S. Foster, Direct imaging of three-dimensional hydration structures at solid-liquid interfaces with subnanometer resolution (2014) (in preparation)Google Scholar
  93. 93.
    R. Nishioka, T. Hiasa, K. Kimura, H. Onishi, J. Phys. Chem. C 117(6), 2939–2943 (2013)CrossRefGoogle Scholar
  94. 94.
    P. Spijker, T. Hiasa, T. Musso, R. Nishioka, H. Onishi, A.S. Foster, Understanding the interface of liquids with an organic crystal surface from atomistic simulations and AFM experiments. J. Phys. Chem. C 118(4), 2058–2066 (2014)CrossRefGoogle Scholar
  95. 95.
    S.C. Abrahams, J.M. Robertson, The crystal structure of p-nitroaniline, NO\(_2\).C\(_6\)H\(_4\).NH\(_2\), Acta Cryst. 1, 252–259 (1948)Google Scholar
  96. 96.
    D.C. Forbes, K.J. Weaver, Bronsted acidic ionic liquids: the dependence on water of the fischer esterification of acetic acid and ethanol. Ionic liquids as promising alternative media for organic synthesis and catalysis, J. Mol. Cat. A, 214 (1):129–132 (2004)Google Scholar
  97. 97.
    J.S. Wilkes, P. Wasserscheid, T. Welton, Ionic Liquids in Synthesis (Wiley-VCH Verlag GmbH & Co, KGaA, Weinheim, 2008)Google Scholar
  98. 98.
    T. Welton, Room-temperature ionic liquids. Solvents for synthesis and catalysis. Chem. Rev. 99(8), 2071–2084 (1999)CrossRefGoogle Scholar
  99. 99.
    T. Moriguchi, T. Yanagi, M. Kunimori, T. Wada, M. Sekine, Synthesis and properties of aminoacylamido-AMP: chemical optimization for the construction of an N-Acyl phosphoramidate linkage, J. Org. Chem. 65(24), 8229–8238 (2000) (pMID: 11101378)Google Scholar
  100. 100.
    R.D. Rogers, K.R. Seddon (eds.), Ionic Liquids as Green Solvents (American Chemical Society, Washington, D.C., 2003)Google Scholar
  101. 101.
    N.V. Plechkova, K.R. Seddon, Applications of ionic liquids in the chemical industry. Chem. Soc. Rev. 37, 123–150 (2008)CrossRefGoogle Scholar
  102. 102.
    G. Feng, J.S. Zhang, R. Qiao, Microstructure and capacitance of the electrical double layers at the interface of ionic liquids and planar electrodes. J. Phys. Chem. C 113(11), 4549–4559 (2009)CrossRefGoogle Scholar
  103. 103.
    A. Balducci, U. Bardi, S. Caporali, M. Mastragostino, F. Soavi, Ionic liquids for hybrid supercapacitors. Electrochem. Commun. 6(6), 566–570 (2004)CrossRefGoogle Scholar
  104. 104.
    T. Kuboki, T. Okuyama, T. Ohsaki, N. Takami, Lithium-air batteries using hydrophobic room temperature ionic liquid electrolyte. J. Power Sour. 146, 766–769 (2005)CrossRefADSGoogle Scholar
  105. 105.
    M. Park, H. Sun, H. Lee, J. Lee, J. Cho, Lithium-air batteries: survey on the current status and perspectives towards automotive applications from a battery industry standpoint. Adv. Energy Mater. 2(7), 780–800 (2012)CrossRefGoogle Scholar
  106. 106.
    T. Tsuda, N. Nemoto, K. Kawakami, E. Mochizuki, S. Kishida, T. Tajiri, T. Kushibiki, S. Kuwabata, SEM observation of wet biological specimens pretreated with room-temperature ionic liquid. Chem. Bio. Chem. 12(17), 2547–2550 (2011)Google Scholar
  107. 107.
    A.E. Somers, P.C. Howlett, D.R. MacFarlane, M. Forsyth, A review of ionic liquid lubricants. Lubricants 1(1), 3–21 (2013)CrossRefGoogle Scholar
  108. 108.
    M. Palacio, B. Bhushan, A review of ionic liquids for green molecular lubrication in nanotechnology. Tribol. Lett. 40, 247–268 (2010)CrossRefGoogle Scholar
  109. 109.
    R. González, A. Hernández, Battez, D. Blanco, J. Viesca, A. Fernández-González, Lubrication of TiN, CrN and DLC PVD coatings with 1-Butyl-1-Methylpyrrolidinium tris(pentafluoroethyl)trifluorophosphate. Tribol. Lett. 40(2), 269–277 (2010)Google Scholar
  110. 110.
    F. Zhou, Y. Liang, W. Liu, Ionic liquid lubricants: designed chemistry for engineering applications. Chem. Soc. Rev. 38, 2590–2599 (2009)CrossRefGoogle Scholar
  111. 111.
    F. Federici Canova, H. Matsubara, M. Mizukami, K. Kurihara, A.L. Shluger, Shear dynamics of nanoconfined ionic liquids. Phys. Chem. Chem. Phys. 16, 8247–8256 (2014)Google Scholar
  112. 112.
    K. Ueno, M. Kasuya, M. Watanabe, M. Mizukami, K. Kurihara, Resonance shear measurement of nanoconfined ionic liquids. Phys. Chem. Chem. Phys. 12, 4066 (2010)CrossRefGoogle Scholar
  113. 113.
    N. Holmberg, J.C. Chen, A.S. Foster, K. Laasonen, Dissolution of NaCl nanocrystals: an ab initio molecular dynamics study. Phys. Chem. Chem. Phys. 16, 17437–17446 (2014)CrossRefGoogle Scholar
  114. 114.
    M. Ricci, P. Spijker, K. Voïtchovsky, Water-induced correlation between single ions imaged at the solid-liquid interface. Nat. Commun. 5, 4400 (2014)CrossRefADSGoogle Scholar
  115. 115.
    E.H.H. Chow, D.K. Bučar, V. Jones, New opportunities in crystal engineering-the role of atomic force microscopy in studies of molecular crystals. Chem. Comm. 48(74), 9210 (2012)CrossRefGoogle Scholar
  116. 116.
    K.i. Umeda, K. Kobayashi, N. Oyabu, Y. Hirata, K. Matsushige, H. Yamada, Practical aspects of Kelvin-probe force microscopy at solid/liquid interfaces in various liquid media. J. Appl. Phys. 116(13), 134307 (2014)Google Scholar
  117. 117.
    N.M. Markovic, Electrocatalysis: interfacing electrochemistry. Nat. Mat. 12(2), 101–102 (2013)CrossRefMathSciNetGoogle Scholar
  118. 118.
    M. Schreiber, M. Eckardt, S. Klassen, H. Adam, M. Nalbach, L. Greifenstein, F. Kling, M. Kittelmann, R. Bechstein, A. Kühnle, How deprotonation changes molecular self-assembly-an AFM study in liquid environment. Soft Matter 9(29), 7145–7149 (2013)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Bernhard Reischl
    • 1
  • Filippo Federici Canova
    • 2
  • Peter Spijker
    • 1
  • Matt Watkins
    • 3
  • Adam Foster
    • 1
    Email author
  1. 1.Department of Applied PhysicsCOMP Centre of Excellence, Aalto University School of ScienceHelsinkiFinland
  2. 2.WPI-AIMR Tohoku UniversitySendaiJapan
  3. 3.School of Mathematics and PhysicsUniversity of LincolnLincolnUK

Personalised recommendations