Deterministic Solution of the Discrete Wigner Equation

  • Johann Cervenka
  • Paul Ellinghaus
  • Mihail Nedjalkov
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8962)

Abstract

The Wigner formalism provides a convenient formulation of quantum mechanics in the phase space. Deterministic solutions of the Wigner equation are especially needed for problems where phase space quantities vary over several orders of magnitude and thus can not be resolved by the existing stochastic approaches. However, finite difference schemes have been problematic due to the discretization of the diffusion term in this differential equation. A new approach, which uses an integral formulation of the Wigner equation that avoids the problematic differentiation, is shown here. The results of the deterministic method are compared and validated with solutions of the Schrödinger equation. Furthermore, certain numerical aspects pertaining to the demanded parallel implementation are discussed.

Keywords

Discrete Wigner equation Integral formulation 

References

  1. 1.
    Dimov, I.T.: Monte Carlo Methods for Applied Scientists. World Scientific, London (2008)MATHGoogle Scholar
  2. 2.
    Fu, Y., Willander, M.: Electron wave-packet transport through nanoscale semiconductor device in time domain. J. Appl. Phys. 97(9), 094311 (2005)CrossRefGoogle Scholar
  3. 3.
    Griffiths, D.: Introduction to Quantum Mechanics. Pearson Prentice Hall, Upper Saddle River (2005)Google Scholar
  4. 4.
    Kosik, R.: Numerical challenges on the road to NanoTCAD. Ph.D. thesis, Institut für Mikroelektronik (2004)Google Scholar
  5. 5.
    Nedjalkov, M., Kosina, H., Selberherr, S., Ringhofer, C., Ferry, D.K.: Unified Particle approach to Wigner-Boltzmann transport in small semiconductor devices. Phys. Rev. B 70, 115319 (2004)CrossRefGoogle Scholar
  6. 6.
    Nedjalkov, M., Querlioz, D., Dollfus, P., Kosina, H.: Wigner function approach. In: Vasileska, D., Goodnick, S.M. (eds.) Nano-electronic Devices. Semiclassical and Quantum Transport Modeling, pp. 289–358. Springer, New York (2011)CrossRefGoogle Scholar
  7. 7.
    Sellier, J.M.D., Nedjalkov, M., Dimov, I., Selberherr, S.: A benchmark study of the Wigner Monte Carlo method. Monte Carlo Method Appl. 20(1), 43–51 (2014)CrossRefMATHMathSciNetGoogle Scholar
  8. 8.
    Sudiarta, I.W., Geldart, D.J.W.: Solving the Schrödinger equation using the finite difference time domain method. J. Phys. A: Math. Theor. 40(8), 1885 (2007)CrossRefMATHMathSciNetGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Johann Cervenka
    • 1
  • Paul Ellinghaus
    • 1
  • Mihail Nedjalkov
    • 1
  1. 1.Institute for MicroelectronicsTU WienViennaAustria

Personalised recommendations