Isogeometric Analysis for Nonlinear Dynamics of Timoshenko Beams

  • Stanislav Stoykov
  • Clemens Hofreither
  • Svetozar Margenov
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8962)

Abstract

The dynamics of beams that undergo large displacements is analyzed in frequency domain and comparisons between models derived by isogeometric analysis and \(p\)-FEM are presented. The equation of motion is derived by the principle of virtual work, assuming Timoshenko’s theory for bending and geometrical type of nonlinearity.

As a result, a nonlinear system of second order ordinary differential equations is obtained. Periodic responses are of interest and the harmonic balance method is applied. The nonlinear algebraic system is solved by an arc-length continuation method in frequency domain.

It is shown that IGA gives better approximations of the nonlinear frequency-response functions than the \(p\)-FEM when models with the same number of degrees of freedom are used.

Keywords

\(p\)-FEM Bifurcation diagrams Isogeometric analysis B-Splines Continuation method Nonlinear frequency-response function 

References

  1. 1.
    Benson, D.J., Bazilevs, Y., Hsu, M.C., Hughes, T.J.R.: Isogeometric shell analysis: The Reissner-Mindlin shell. Comput. Methods Appl. Mech. Eng. 199(5–8), 276–289 (2010)CrossRefMATHMathSciNetGoogle Scholar
  2. 2.
    Cottrell, J.A., Hughes, T.J.R., Bazilevs, Y.: Isogeometric Analysis: Toward Integration of CAD and FEA. Wiley, Chichester (2009)CrossRefGoogle Scholar
  3. 3.
    Cottrell, J.A., Reali, A., Bazilevs, Y., Hughes, T.J.R.: Isogeometric analysis of structural vibrations. Comput. Methods Appl. Mech. Eng. 195(41–43), 5257–5296 (2006)CrossRefMATHMathSciNetGoogle Scholar
  4. 4.
    Hughes, T.J.R., Cottrell, J.A., Bazilevs, Y.: Isogeometric analysis: CAD, finite elements, NURBS, exact geometry and mesh refinement. Comput. Methods Appl. Mech. Eng. 194(39–41), 4135–4195 (2005). http://dx.doi.org/10.1016/j.cma.2004.10.008 CrossRefMATHMathSciNetGoogle Scholar
  5. 5.
    Hughes, T.J.R., Reali, A., Sangalli, G.: Duality and unified analysis of discrete approximations in structural dynamics and wave propagation: Comparison of \(p\)-method finite elements with \(k\)-method NURBS. Comput. Methods Appl. Mech. Eng. 197(49–50), 4104–4124 (2008)CrossRefMATHMathSciNetGoogle Scholar
  6. 6.
    Lee, S.J., Park, K.S.: Vibrations of Timoshenko beams with isogeometric approach. Appl. Math. Model. 37(22), 9174–9190 (2013)CrossRefMathSciNetGoogle Scholar
  7. 7.
    Piegl, L., Tiller, W.: The NURBS Book. Monographs in Visual Communications. Springer, Berlin (1997)CrossRefGoogle Scholar
  8. 8.
    Ribeiro, P., Petyt, M.: Non-linear vibration of beams with internal resonance by the hierarchical finite-element method. J. Sound Vibr. 224(4), 591–624 (1999)CrossRefGoogle Scholar
  9. 9.
    Schumaker, L.: Spline Functions: Basic Theory. Cambridge Mathematical Library. Cambridge University Press, Cambridge (2007)CrossRefGoogle Scholar
  10. 10.
    Stoykov, S., Ribeiro, P.: Nonlinear free vibrations of beams in space due to internal resonance. J. Sound Vibr. 330, 4574–4595 (2011)CrossRefGoogle Scholar
  11. 11.
    Weeger, O., Wever, U., Simeon, B.: Isogeometric analysis of nonlinear Euler-Bernoulli beam vibrations. Nonlinear Dyn. 72(4), 813–835 (2013)CrossRefMATHMathSciNetGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Stanislav Stoykov
    • 1
  • Clemens Hofreither
    • 1
  • Svetozar Margenov
    • 1
  1. 1.Institute of Information and Communication TechnologiesSofiaBulgaria

Personalised recommendations