If You Can’t Take the Heat: Temperature Effects on Low-Power Wireless Networks and How to Mitigate Them

  • Florian Schmidt
  • Matteo Ceriotti
  • Niklas Hauser
  • Klaus Wehrle
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8965)


Low-power wireless networks, especially in outdoor deployments, are exposed to a wide range of temperatures. The detrimental effect of high temperatures on communication quality is well known. In this paper, we use a testbed with self-made temperature control devices to investigate the effects of temperature on several communication-relevant metrics. The analyses both confirm some previously published results and demonstrate deviations from others. Based on these results, we propose a Reed–Solomon-based FEC scheme to mitigate the negative effects of temperature and provide results suggesting that such a scheme is both feasible and advantageous.


wireless sensor networks measurements packet corruption bit errors reliability forward error correction temperature effects 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Ahn, J.S., Hong, S.W., Heidemann, J.: An adaptive fec code control algorithm for mobile wireless sensor networks. J. Comm. Netw. 7(4), 489–498 (2005)CrossRefGoogle Scholar
  2. 2.
    Bannister, K., Giorgetti, G., Gupta, S.K.S.: Wireless sensor networking for “hot” applications: Effects of temperature on signal strength, data collection and localization. In: Proc. HotEmNets. ACM (2008)Google Scholar
  3. 3.
    Boano, C.A., et al.: The impact of temperature on outdoor industrial sensornet applications. IEEE Trans. Ind. Informat. 6(3), 451–459 (2010)CrossRefGoogle Scholar
  4. 4.
    Boano, C.A., et al.: Hot Packets: A systematic evaluation of the effect of temperature on low power wireless transceivers. In: Proc. ExtremeCom. ACM (2013)Google Scholar
  5. 5.
    Boano, C.A., et al.: Templab: A testbed infrastructure to study the impact of temperature on wireless sensor networks. In: Proc. IPSN. IEEE Press (2014)Google Scholar
  6. 6.
    Hermans, F., Wennerström, H., McNamara, L., Rohner, C., Gunningberg, P.: All is not lost: Understanding and exploiting packet corruption in outdoor sensor networks. In: Krishnamachari, B., Murphy, A.L., Trigoni, N. (eds.) EWSN 2014. LNCS, vol. 8354, pp. 116–132. Springer, Heidelberg (2014)CrossRefGoogle Scholar
  7. 7.
    Liang, C.J.M., Priyantha, N.B., Liu, J., Terzis, A.: Surviving Wi-fi Interference in Low Power ZigBee Networks. In: Proc. SenSys, pp. 309–322. ACM (2010)Google Scholar
  8. 8.
    Reed, I.S., Solomon, G.: Polynomial codes over certain finite fields. Journal of the Society for Industrial and Applied Mathematics 8(2), 300–304 (1960)CrossRefzbMATHMathSciNetGoogle Scholar
  9. 9.
    Schmidt, F., Ceriotti, M., Hauser, N., Wehrle, K.: Hotbox: Testing temperature effects in sensor networks. Tech. Rep. AIB-2014-14, RWTH Aachen (2014)Google Scholar
  10. 10.
    Schmidt, F., Ceriotti, M., Wehrle, K.: Bit error distribution and mutation patterns of corrupted packets in low-power wireless networks. In: ACM WiNTECH (2013)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Florian Schmidt
    • 1
  • Matteo Ceriotti
    • 2
  • Niklas Hauser
    • 1
  • Klaus Wehrle
    • 1
  1. 1.Communication and Distrib. Systems GroupRWTH Aachen UniversityGermany
  2. 2.Networked Embedded Systems GroupUniversity of Duisburg–EssenGermany

Personalised recommendations