Advertisement

On the Scalability of Constructive Interference in Low-Power Wireless Networks

  • Claro Noda
  • Carlos M. Pérez-Penichet
  • Balint Seeber
  • Marco Zennaro
  • Mário Alves
  • Adriano Moreira
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8965)

Abstract

Constructive baseband interference has been recently introduced in low-power wireless networks as a promising technique enabling low-latency network flooding and sub-μs time synchronisation among network nodes. The scalability of this technique has been questioned in regards to the maximum temporal misalignment among baseband signals, due to the variety of path delays in the network. By contrast, we find that the scalability is compromised, in the first place, by emerging fast fading in the composite channel, which originates in the carrier frequency disparity of the participating repeaters nodes. We investigate the multisource wave problem and show the resulting signal becomes vulnerable in the presence of noise, leading to significant deterioration of the link whenever the carriers have similar amplitudes.

Keywords

Sensor Node Medium Access Control Link Quality Constructive Interference Baseband Signal 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bloessl, B., Leitner, C., Dressler, F., Sommer, C.: A GNU Radio-based IEEE 802.15. 4 Testbed. 12. GI/ITG FACHGESPRÄCH SENSORNETZE (2013)Google Scholar
  2. 2.
    Chebrolu, K., Raman, B., Mishra, N., Valiveti, P.K., Kumar, R.: Brimon: A sensor network system for railway bridge monitoring. In: ACM MobiSys, NY, USA (2008)Google Scholar
  3. 3.
    Doddavenkatappa, M., Chan, M.C., Leong, B.: Splash: Fast data dissemination with constructive interference in wireless sensor networks. In: USENIX NSDI 2013, Lombard, IL (2013)Google Scholar
  4. 4.
    Doddavenkatappa, M., Choon, M.: P3: A practical packet pipeline using synchronous transmissions for sensor networks. In: ACM/IEEE IPSN (2014)Google Scholar
  5. 5.
    Dutta, A., Saha, D., Grunwald, D., Sicker, D.: SMACK: A SMart ACKnowledgment scheme for broadcast messages in WLANs. In: ACM SIGCOMM, NY, USA (2009)Google Scholar
  6. 6.
    Dutta, P., Dawson-Haggerty, S., Chen, Y., Liang, C.J.M., Terzis, A.: Design and evaluation of a versatile and efficient receiver-initiated link layer for low-power wireless. In: ACM SenSys, Zurich, Switzerland (2010)Google Scholar
  7. 7.
    Ettus Research: USRP B200/B210 Bus Series Product Overview, http://goo.gl/W0YLmQ, (accessed: September 22, 2014)
  8. 8.
    Ferrari, F., Zimmerling, M., Mottola, L., Thiele, L.: Low-power wireless bus. In: SenSys. ACM, New York (2012)Google Scholar
  9. 9.
    Ferrari, F., Zimmerling, M., Thiele, L., Saukh, O.: Efficient Network Flooding and Time Synchronization with Glossy. In: ACM/IEEE IPSN, Chicago, IL, USA (April 2011)Google Scholar
  10. 10.
    GNU Radio Website, http://www.gnuradio.org (accessed September 2014)
  11. 11.
    Goldsmith, A.: Wireless Communications. Cambridge Univ. Press, NY (2005)CrossRefGoogle Scholar
  12. 12.
    IEEE 802.15.4 Working Group: Wireless MAC and PHY Specs for Low-Rate WPANs, rev. 802.15.4-2011 edn. (September 2011)Google Scholar
  13. 13.
    Jafarkhani, H.: A quasi-orthogonal space-time block code. IEEE Transactions on Communications 49(1) (January 2001)Google Scholar
  14. 14.
    Polastre, J., Szewczyk, R., Culler, D.: Telos: Enabling ultra-low power wireless research. In: ACM/IEEE IPSN, Piscataway, NJ, USA (2005)Google Scholar
  15. 15.
    Rahul, H., Hassanieh, H., Katabi, D.: SourceSync: A Distributed Wireless Architecture for Exploiting Sender Diversity. In: ACM SIGCOMM 2010, New Delhi, India (August 2010)Google Scholar
  16. 16.
    Saleh, A.A.M., Valenzuela, R.: A statistical model for indoor multipath propagation. IEEE Journal on Selected Areas in Communications 5(2), 128–137 (1987)CrossRefGoogle Scholar
  17. 17.
    Wang, Y., He, Y., Mao, X., Liu, Y., Huang, Z., Li, X.Y.: Exploiting Constructive Interference for Scalable Flooding in Wireless Networks. In: IEEE INFOCOM, Orlando, FL, USA (2012)Google Scholar
  18. 18.
    Maghsoodi, Y., Exact, S.A.: amplitude distributions of sums of stochastic sinusoidals (2008)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Claro Noda
    • 1
    • 2
  • Carlos M. Pérez-Penichet
    • 2
  • Balint Seeber
    • 3
  • Marco Zennaro
    • 4
  • Mário Alves
    • 1
  • Adriano Moreira
    • 2
  1. 1.Polytechnic Institute of Porto (ISEP/IPP)CISTER/INESC-TECPortugal
  2. 2.Algoritmi Research CentreUniversity of MinhoGuimarãesPortugal
  3. 3.Ettus ResearchSanta ClaraUSA
  4. 4.Guglielmo Marconi LaboratoryICTPTriesteItaly

Personalised recommendations