Sorting Networks: The End Game

  • Michael Codish
  • Luís Cruz-Filipe
  • Peter Schneider-Kamp
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8977)


This paper studies properties of the back end of a sorting network and illustrates the utility of these in the search for networks of optimal size or depth. All previous works focus on properties of the front end of networks and on how to apply these to break symmetries in the search. The new properties help shed understanding on how sorting networks sort and speed-up solvers for both optimal size and depth by an order of magnitude.


Sorting networks SAT solving Symmetry breaking 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Baddar, S.W.A.H., Batcher, K.E.: Designing Sorting Networks: A New Paradigm. Springer (2011)Google Scholar
  2. 2.
    Bundala, D., Závodný, J.: Optimal sorting networks. In: Dediu, A.-H., Martín-Vide, C., Sierra-Rodríguez, J.-L., Truthe, B. (eds.) LATA 2014. LNCS, vol. 8370, pp. 236–247. Springer, Heidelberg (2014) CrossRefGoogle Scholar
  3. 3.
    Codish, M., Cruz-Filipe, L., Frank, M., Schneider-Kamp, P.: Twenty-five comparators is optimal when sorting nine inputs (and twenty-nine for ten). In: Proceedings of ICTAI 2014. IEEE (2014) (accepted for publication)Google Scholar
  4. 4.
    Codish, M., Cruz-Filipe, L., Schneider-Kamp, P.: The quest for optimal sorting networks: Efficient generation of two-layer prefixes. In: Proceedings of SYNASC 2014. IEEE (2014) (accepted for publication)Google Scholar
  5. 5.
    Coles, D.: Efficient filters for the simulated evolution of small sorting networks. In: Proceedings of GECCO 2012, pp. 593–600. ACM (2012)Google Scholar
  6. 6.
    Knuth, D.E.: The Art of Computer Programming. Sorting and Searching, vol. III. Addison-Wesley (1973)Google Scholar
  7. 7.
    Müller, M., Ehlers, T.: Faster sorting networks for 17, 19 and 20 inputs. CoRR abs/1410.2736 (2014).
  8. 8.
    Parberry, I.: A computer-assisted optimal depth lower bound for nine-input sorting networks. Mathematical Systems Theory 24(2), 101–116 (1991)CrossRefzbMATHMathSciNetGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Michael Codish
    • 1
  • Luís Cruz-Filipe
    • 2
  • Peter Schneider-Kamp
    • 2
  1. 1.Department of Computer ScienceBen-Gurion University of the NegevBeershevaIsrael
  2. 2.Department of Mathematics and Computer ScienceUniversity of Southern DenmarkOdense MDenmark

Personalised recommendations