Preimage Problems for Reaction Systems

  • Alberto Dennunzio
  • Enrico Formenti
  • Luca Manzoni
  • Antonio E. PorrecaEmail author
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8977)


We investigate the computational complexity of some problems related to preimages and ancestors of states of reaction systems. In particular, we prove that finding a minimum-cardinality preimage or ancestor, computing their size, or counting them are all intractable problems, with complexity ranging from \(\mathbf{FP}^{\mathbf{NP}[\log n]}\) to \(\mathbf{FPSPACE}(\mathrm{poly})\).


Reaction systems Computational complexity 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Chen, Z.Z., Toda, S.: On the complexity of computing optimal solutions. International Journal of Foundations of Computer Science 2(3), 207–220 (1991)CrossRefzbMATHMathSciNetGoogle Scholar
  2. 2.
    Ehrenfeucht, A., Rozenberg, G.: Basic notions of reaction systems. In: Calude, C.S., Calude, E., Dinneen, M.J. (eds.) DLT 2004. LNCS, vol. 3340, pp. 27–29. Springer, Heidelberg (2004) CrossRefGoogle Scholar
  3. 3.
    Ehrenfeucht, A., Rozenberg, G.: Reaction systems. Fundamenta Informaticae 75, 263–280 (2007)zbMATHMathSciNetGoogle Scholar
  4. 4.
    Formenti, E., Manzoni, L., Porreca, A.E.: Cycles and global attractors of reaction systems. In: Jürgensen, H., Karhumäki, J., Okhotin, A. (eds.) DCFS 2014. LNCS, vol. 8614, pp. 114–125. Springer, Heidelberg (2014) CrossRefGoogle Scholar
  5. 5.
    Formenti, E., Manzoni, L., Porreca, A.E.: Fixed points and attractors of reaction systems. In: Beckmann, A., Csuhaj-Varjú, E., Meer, K. (eds.) CiE 2014. LNCS, vol. 8493, pp. 194–203. Springer, Heidelberg (2014) CrossRefGoogle Scholar
  6. 6.
    Krentel, M.W.: The complexity of optimization problems. Journal of Computer and System Sciences 36, 490–509 (1988)CrossRefzbMATHMathSciNetGoogle Scholar
  7. 7.
    Ladner, R.E.: Polynomial space counting problems. SIAM Journal on Computing 18(6), 1087–1097 (1989)CrossRefzbMATHMathSciNetGoogle Scholar
  8. 8.
    Papadimitriou, C.H.: Computational Complexity. Addison-Wesley (1993)Google Scholar
  9. 9.
    Porreca, A.E., Murphy, N., Pérez-Jiménez, M.J.: An optimal frontier of the efficiency of tissue P systems with cell division. In: García-Quismondo, M., Macías-Ramos, L.F., Păun, Gh., Valencia-Cabrera, L. (eds.) Tenth Brainstorming Week on Membrane Computing, vol. II, pp. 141–166. Fénix Editora (2012)Google Scholar
  10. 10.
    Salomaa, A.: Minimal and almost minimal reaction systems. Natural Computing 12(3), 369–376 (2013)CrossRefMathSciNetGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Alberto Dennunzio
    • 1
  • Enrico Formenti
    • 2
  • Luca Manzoni
    • 1
  • Antonio E. Porreca
    • 1
    Email author
  1. 1.Dipartimento di Informatica, Sistemistica e ComunicazioneUniversità Degli Studi di Milano-BicoccaMilanoItaly
  2. 2.CNRS, I3S, UMR 7271Université Nice Sophia AntipolisSophia AntipolisFrance

Personalised recommendations