Advertisement

Parameterized Enumeration for Modification Problems

  • Nadia CreignouEmail author
  • Raïda Ktari
  • Arne Meier
  • Julian-Steffen Müller
  • Frédéric Olive
  • Heribert Vollmer
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8977)

Abstract

Recently the class \(DelayFPT\) has been introduced into parameterized complexity in order to capture the notion of efficiently solvable parameterized enumeration problems. In this paper we propose a framework for parameterized ordered enumeration and will show how to obtain \(DelayFPT\) enumeration algorithms in the context of graph modification problems. We study these problems considering two different orders of solutions, lexicographic and by size. We present generic algorithmic strategies: The first one is based on the well-known principle of self-reducibility in the context of lexicographic order. The second one shows that the existence of some neighborhood structure among the solutions implies the existence of a \(DelayFPT\) algorithm which outputs all solutions ordered non-decreasingly by their size.

Keywords

Parameterized complexity Enumeration Bounded search tree Parameterized enumeration Enumeration with ordering 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Avis, D., Fukuda, K.: Reverse search for enumeration. Discrete Applied Mathematics 65, 21–46 (1996)CrossRefzbMATHMathSciNetGoogle Scholar
  2. 2.
    Brandtstädt, A., Le, V.B., Spinrad, J.P.: Graph Classes: A Survey. Monographs on Discrete Applied Mathematics. SIAM, Philadelphia (1988)Google Scholar
  3. 3.
    Cai, L.: Fixed-parameter tractability of graph modification problems for hereditary properties. Information Processing Letters 58(4), 171–176 (1996)CrossRefzbMATHMathSciNetGoogle Scholar
  4. 4.
    Creignou, N., Hébrard, J.J.: On generating all solutions of generalized satisfiability problems. Theoretical Informatics and Applications 31(6), 499–511 (1997)zbMATHMathSciNetGoogle Scholar
  5. 5.
    Creignou, N., Meier, A., Müller, J.-S., Schmidt, J., Vollmer, H.: Paradigms for parameterized enumeration. In: Chatterjee, K., Sgall, J. (eds.) MFCS 2013. LNCS, vol. 8087, pp. 290–301. Springer, Heidelberg (2013) CrossRefGoogle Scholar
  6. 6.
    Creignou, N., Olive, F., Schmidt, J.: Enumerating all solutions of a boolean CSP by non-decreasing weight. In: Sakallah, K.A., Simon, L. (eds.) SAT 2011. LNCS, vol. 6695, pp. 120–133. Springer, Heidelberg (2011) CrossRefGoogle Scholar
  7. 7.
    Damaschke, P.: Parameterized enumeration, transversals, and imperfect phylogeny reconstruction. Theoretical Computer Science 351(3), 337–350 (2006)CrossRefzbMATHMathSciNetGoogle Scholar
  8. 8.
    Fernau, H.: On parameterized enumeration. In: Ibarra, O.H., Zhang, L. (eds.) COCOON 2002. LNCS, vol. 2387, pp. 564–573. Springer, Heidelberg (2002) CrossRefGoogle Scholar
  9. 9.
    Fomin, F.V., Saurabh, S., Villanger, Y.: A polynomial kernel for proper interval vertex deletion. SIAM Journal Discrete Mathematics 27(4), 1964–1976 (2013)CrossRefzbMATHMathSciNetGoogle Scholar
  10. 10.
    Frances, M., Litman, A.: On covering problems of codes. Theory of Computing Systems 30(2), 113–119 (1997)CrossRefzbMATHMathSciNetGoogle Scholar
  11. 11.
    Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory of NP-Completeness. W. H. Freeman & Co., New York (1990) Google Scholar
  12. 12.
    Gaspers, S., Szeider, S.: Backdoors to Satisfaction. In: Bodlaender, H.L., Downey, R., Fomin, F.V., Marx, D. (eds.) Fellows Festschrift 2012. LNCS, vol. 7370, pp. 287–317. Springer, Heidelberg (2012). http://dx.doi.org/10.1007/978-3-642-30891-8_15 CrossRefGoogle Scholar
  13. 13.
    Gramm, J., Niedermeier, R., Rossmanith, P.: Fixed-parameter algorithms for CLOSEST STRING and related problems. Algorithmica 37(1), 25–42 (2003)CrossRefzbMATHMathSciNetGoogle Scholar
  14. 14.
    Johnson, D.S., Papadimitriou, C.H., Yannakakis, M.: On generating all maximal independent sets. Information Processing Letters 27(3), 119–123 (1988)CrossRefzbMATHMathSciNetGoogle Scholar
  15. 15.
    Kaplan, H., Shamir, R., Tarjan, R.E.: Tractability of parameterized completion problems on chordal, strongly chordal, and proper interval graphs. SIAM Journal on Computing 28(5), 1906–1922 (1999)CrossRefzbMATHMathSciNetGoogle Scholar
  16. 16.
    Schmidt, J.: Enumeration: Algorithms and Complexity. Master’s thesis, Leibniz Universität Hannover (2009)Google Scholar
  17. 17.
    Shamir, R., Sharan, R., Tsur, D.: Cluster graph modification problems. Discrete Applied Mathematics 114(1–2), 173–182 (2004)CrossRefMathSciNetGoogle Scholar
  18. 18.
    Sörensen, K., Janssens, G.K.: An algorithm to generate all spanning trees of a graph in order of increasing cost. Pesquisa Operacional 25(2), 219–229 (2005)CrossRefGoogle Scholar
  19. 19.
    Yannakakis, M.: Node- and edge-deletion NP-complete problems. In: Proc. STOC, pp. 253–264 (1978)Google Scholar
  20. 20.
    Yannakakis, M.: Computing the minimum fill-in is NP-complete. SIAM Journal on Algebraic Discrete Methods 2(1), 77–79 (1981)CrossRefzbMATHMathSciNetGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Nadia Creignou
    • 1
    Email author
  • Raïda Ktari
    • 1
  • Arne Meier
    • 2
  • Julian-Steffen Müller
    • 2
  • Frédéric Olive
    • 1
  • Heribert Vollmer
    • 2
  1. 1.CNRS, LIF UMR 7279Aix-Marseille UniversitéMarseilleFrance
  2. 2.Institut für Theoretische InformatikLeibniz Universität HannoverHannoverGermany

Personalised recommendations