Advertisement

Complexity Classes for Membrane Systems: A Survey

  • Giancarlo Mauri
  • Alberto Leporati
  • Luca Manzoni
  • Antonio E. Porreca
  • Claudio Zandron
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8977)

Abstract

The computational power of membrane systems, in their different variants, can be studied by defining classes of problems that can be solved within given bounds on computation time or space, and comparing them with usual computational complexity classes related to the Turing Machine model. Here we will consider in particular membrane systems with active membranes (where new membranes can be created by division of existing membranes). The problems related to the definition of time/space complexity classes for membrane systems will be discussed, and the resulting hierarchy will be compared with the usual hierarchy of complexity classes, mainly through simulations of Turing Machines by (uniform families of) membrane systems with active membranes.

Keywords

Turing Machine Membrane System Complexity Class Active Membrane Truth Assignment 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Alhazov, A., Leporati, A., Mauri, G., Porreca, A.E., Zandron, C.: The computational power of exponential-space P systems with active membranes. In: Martínez-del-Amor, M.A., Păun, Gh., Pérez-Hurtado, I., Romero-Campero, F.J. (eds.) Proceedings of the Tenth Brainstorming Week on Membrane Computing, vol. I, pp. 35–60. Fénix Editora (2012)Google Scholar
  2. 2.
    Alhazov, A., Leporati, A., Mauri, G., Porreca, A.E., Zandron, C.: Space complexity equivalence of P systems with active membranes and Turing machines. Theoretical Computer Science 529, 69–81 (2014)CrossRefzbMATHMathSciNetGoogle Scholar
  3. 3.
    Alhazov, A., Martín-Vide, C., Pan, L.: Solving a PSPACE-complete problem by recognizing P systems with restricted active membranes. Fundamenta Informaticae 58(2), 67–77 (2003)MathSciNetGoogle Scholar
  4. 4.
    Hemaspaandra, L.A., Ogihara, M.: The Complexity Theory Companion. Texts in Theoretical Computer Science. Springer (2002)Google Scholar
  5. 5.
    Leporati, A., Manzoni, L., Mauri, G., Porreca, A.E., Zandron, C.: Constant-space P systems with active membranes. Fundamenta Informaticae 134(1–2), 111–128 (2014)MathSciNetGoogle Scholar
  6. 6.
    Leporati, A., Manzoni, L., Mauri, G., Porreca, A.E., Zandron, C.: Membrane division, oracles, and the counting hierarchy. Fundamenta Informaticae 137, 1–15 (2015)Google Scholar
  7. 7.
    Leporati, A., Manzoni, L., Mauri, G., Porreca, A.E., Zandron, C.: Simulating elementary active membranes, with an application to the P conjecture. In: Gheorghe, M., Rozenberg, G., Salomaa, A., Sosík, P., Zandron, C. (eds.) CMC 2014. LNCS, vol. 8961, pp. 284–299. Springer, Heidelberg (2014)CrossRefGoogle Scholar
  8. 8.
    Leporati, A., Mauri, G., Porreca, A.E., Zandron, C.: A gap in the space hierarchy of P systems with active membranes. Journal of Automata, Languages and Combinatorics 19(1–4), 173–184 (2014)MathSciNetGoogle Scholar
  9. 9.
    Mix Barrington, D.A., Immerman, N., Straubing, H.: On uniformity within NC\(^1\). Journal of Computer and System Sciences 41(3), 274–306 (1990)CrossRefzbMATHMathSciNetGoogle Scholar
  10. 10.
    Murphy, N., Woods, D.: The computational power of membrane systems under tight uniformity conditions. Natural Computing 10(1), 613–632 (2011)CrossRefzbMATHMathSciNetGoogle Scholar
  11. 11.
    Papadimitriou, C.H.: Computational Complexity. Addison-Wesley (1993)Google Scholar
  12. 12.
    Păun, Gh.: Computing with membranes. Journal of Computer and System Sciences 61(1), 108–143 (2000)Google Scholar
  13. 13.
    Păun, Gh.: P systems with active membranes: Attacking NP-complete problems. Journal of Automata, Languages and Combinatorics 6(1), 75–90 (2001)Google Scholar
  14. 14.
    Păun, Gh., Rozenberg, G., Salomaa, A. (eds.): The Oxford Handbook of Membrane Computing. Oxford University Press (2010)Google Scholar
  15. 15.
    Pérez-Jiménez, M.J., Romero-Jiménez, A., Sancho-Caparrini, F.: Complexity classes in models of cellular computing with membranes. Natural Computing 2(3), 265–284 (2003)CrossRefzbMATHMathSciNetGoogle Scholar
  16. 16.
    Porreca, A.E., Leporati, A., Mauri, G., Zandron, C.: Introducing a space complexity measure for P systems. International Journal of Computers, Communications & Control 4(3), 301–310 (2009)Google Scholar
  17. 17.
    Porreca, A.E., Leporati, A., Mauri, G., Zandron, C.: Elementary active membranes have the power of counting. International Journal of Natural Computing Research 2(3), 329–342 (2011)CrossRefGoogle Scholar
  18. 18.
    Porreca, A.E., Leporati, A., Mauri, G., Zandron, C.: P systems with active membranes working in polynomial space. International Journal of Foundations of Computer Science 22(1), 65–73 (2011)CrossRefzbMATHMathSciNetGoogle Scholar
  19. 19.
    Porreca, A.E., Leporati, A., Mauri, G., Zandron, C.: P systems simulating oracle computations. In: Gheorghe, M., Păun, G., Rozenberg, G., Salomaa, A., Verlan, S. (eds.) CMC 2011. LNCS, vol. 7184, pp. 346–358. Springer, Heidelberg (2012) CrossRefGoogle Scholar
  20. 20.
    Porreca, A.E., Leporati, A., Mauri, G., Zandron, C.: Sublinear-space P systems with active membranes. In: Csuhaj-Varjú, E., Gheorghe, M., Rozenberg, G., Salomaa, A., Vaszil, G. (eds.) CMC 2012. LNCS, vol. 7762, pp. 342–357. Springer, Heidelberg (2013) CrossRefGoogle Scholar
  21. 21.
    Sosík, P.: The computational power of cell division in P systems: Beating down parallel computers? Natural Computing 2(3), 287–298 (2003)CrossRefzbMATHMathSciNetGoogle Scholar
  22. 22.
    Valsecchi, A., Porreca, A.E., Leporati, A., Mauri, G., Zandron, C.: An efficient simulation of polynomial-space turing machines by P systems with active membranes. In: Păun, G., Pérez-Jiménez, M.J., Riscos-Núñez, A., Rozenberg, G., Salomaa, A. (eds.) WMC 2009. LNCS, vol. 5957, pp. 461–478. Springer, Heidelberg (2010) CrossRefGoogle Scholar
  23. 23.
    Zandron, C., Ferretti, C., Mauri, G.: Solving NP-complete problems using P systems with active membranes. In: Antoniou, I., Calude, C.S., Dinneen, M.J. (eds.) Unconventional Models of Computation, UMC 2000, Proceedings of the Second International Conference, pp. 289–301. Springer (2001)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Giancarlo Mauri
    • 1
  • Alberto Leporati
    • 1
  • Luca Manzoni
    • 1
  • Antonio E. Porreca
    • 1
  • Claudio Zandron
    • 1
  1. 1.Dipartimento di Informatica, Sistemistica e ComunicazioneUniversità degli Studi di Milano-BicoccaMilanoItaly

Personalised recommendations