Recurrence Relations, Succession Rules, and the Positivity Problem

  • Stefano Bilotta
  • Elisa Pergola
  • Renzo Pinzani
  • Simone Rinaldi
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8977)


In this paper we present a method which can be used to investigate on the positivity of a number sequence defined by a recurrence relation having constant coefficients (in short, a \(C\)-recurrence).


\(C\)-recurrences Positive numbers sequence 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Barcucci, E., Del Lungo, A., Frosini, A., Rinaldi, S.: A technology for reverse-engineering a combinatorial problem from a rational generating function. Advances in Applied Mathematics 26(2), 129–153 (2001)CrossRefzbMATHMathSciNetGoogle Scholar
  2. 2.
    Barcucci, E., Del Lungo, A., Pergola, E., Pinzani, R.: ECO: a methodology for the Enumeration of Combinatorial Objects. Journal of Difference Equations and Applications 5, 435–490 (1999)CrossRefzbMATHMathSciNetGoogle Scholar
  3. 3.
    Berstel, J., Mignotte, M.: Deux propriétés décidables des suites récurrentes linéaires. Bulletin de la Société Mathématique de France 104(2), 175–184 (1976)zbMATHMathSciNetGoogle Scholar
  4. 4.
    Berstel, J., Reutenauer, C.: Another proof of Soittola’s Theorem. Theoretical Computer Science 393, 196–203 (2008)CrossRefzbMATHMathSciNetGoogle Scholar
  5. 5.
    Bilotta, S., Grazzini, E., Pergola, E., Pinzani, R.: Avoiding cross-bifix-free binary words. ACTA Informatica 50, 157–173 (2013)CrossRefzbMATHMathSciNetGoogle Scholar
  6. 6.
    Chung, F.R.K., Graham, R.L., Hoggatt, V.E., Kleimann, M.: The number of Baxter permutations. Journal of Combinatorial Theory Series A 24, 382–394 (1978)CrossRefzbMATHMathSciNetGoogle Scholar
  7. 7.
    Duchi, E., Frosini, A., Pinzani, R., Rinaldi, S.: A note on rational succession rules. Journal of Integer Sequences 6, Article 03.1.7 (2003)Google Scholar
  8. 8.
    Ferrari, L., Pergola, E., Pinzani, R., Rinaldi, S.: An algebraic characterization of the set of succession rules. Theoretical Computer Science 281, 351–367 (2002)CrossRefzbMATHMathSciNetGoogle Scholar
  9. 9.
    Ferrari, L., Pergola, E., Pinzani, R., Rinaldi, S.: Jumping succession rules and their generating functions. Discrete Mathematics 271, 29–50 (2003)CrossRefzbMATHMathSciNetGoogle Scholar
  10. 10.
    Gerhold, S.: Sequences: non-holonomicity and inequalities, ph.D. ThesisGoogle Scholar
  11. 11.
    Gessel, I.: Rational functions with nonnegative integer coefficients. In The 50th seminaire Lotharingien de Combinatoire, page Domaine Saint-Jacques. Unpublished, available at Gessels homepage March 2003Google Scholar
  12. 12.
    Halava, V., Harju, T., Hirvensalo, M.: Positivity of second order linear recurrent sequences. Discrete Applied Mathematics 154, 447–451 (2006)CrossRefzbMATHMathSciNetGoogle Scholar
  13. 13.
    Koutschan, C.: Regular languages and their generating functions: The inverse problem. Theoretical Computer Science 391, 65–74 (2008)CrossRefzbMATHMathSciNetGoogle Scholar
  14. 14.
    Laohakosol, V., Tangsupphathawat, P.: Positivity of third order linear recurrence sequences. Discrete Applied Mathematics 157, 3239–3248 (2009)CrossRefzbMATHMathSciNetGoogle Scholar
  15. 15.
    Perrin, D.: On positive matrices. Theoretical Computer Science 94(2), 357–366 (1992)CrossRefzbMATHMathSciNetGoogle Scholar
  16. 16.
    Salomaa, A., Soittola, M.: Automata-Theoretic Aspects of Formal Power Series. Springer-Verlag (1978)Google Scholar
  17. 17.
    Soittola, M.: Positive rational sequences. Theoretical Computer Science 2(3), 317–322 (1976)CrossRefzbMATHMathSciNetGoogle Scholar
  18. 18.
    Zeilberger, D.: A holonomic systems approach to special functions identities. Journal of Computational and Applied Mathematics 32, 321–368 (1990)CrossRefzbMATHMathSciNetGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Stefano Bilotta
    • 1
  • Elisa Pergola
    • 1
  • Renzo Pinzani
    • 1
  • Simone Rinaldi
    • 2
  1. 1.Dipartimento di Matematica e Informatica “Ulisse Dini”University of FlorenceFirenzeItaly
  2. 2.Dipartimento di Ingegneria Dell’Informazione e Scienze MatematicheUniversity of SienaSienaItaly

Personalised recommendations