Advertisement

Recurrence Relations, Succession Rules, and the Positivity Problem

  • Stefano Bilotta
  • Elisa Pergola
  • Renzo Pinzani
  • Simone Rinaldi
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8977)

Abstract

In this paper we present a method which can be used to investigate on the positivity of a number sequence defined by a recurrence relation having constant coefficients (in short, a \(C\)-recurrence).

Keywords

\(C\)-recurrences Positive numbers sequence 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Barcucci, E., Del Lungo, A., Frosini, A., Rinaldi, S.: A technology for reverse-engineering a combinatorial problem from a rational generating function. Advances in Applied Mathematics 26(2), 129–153 (2001)CrossRefzbMATHMathSciNetGoogle Scholar
  2. 2.
    Barcucci, E., Del Lungo, A., Pergola, E., Pinzani, R.: ECO: a methodology for the Enumeration of Combinatorial Objects. Journal of Difference Equations and Applications 5, 435–490 (1999)CrossRefzbMATHMathSciNetGoogle Scholar
  3. 3.
    Berstel, J., Mignotte, M.: Deux propriétés décidables des suites récurrentes linéaires. Bulletin de la Société Mathématique de France 104(2), 175–184 (1976)zbMATHMathSciNetGoogle Scholar
  4. 4.
    Berstel, J., Reutenauer, C.: Another proof of Soittola’s Theorem. Theoretical Computer Science 393, 196–203 (2008)CrossRefzbMATHMathSciNetGoogle Scholar
  5. 5.
    Bilotta, S., Grazzini, E., Pergola, E., Pinzani, R.: Avoiding cross-bifix-free binary words. ACTA Informatica 50, 157–173 (2013)CrossRefzbMATHMathSciNetGoogle Scholar
  6. 6.
    Chung, F.R.K., Graham, R.L., Hoggatt, V.E., Kleimann, M.: The number of Baxter permutations. Journal of Combinatorial Theory Series A 24, 382–394 (1978)CrossRefzbMATHMathSciNetGoogle Scholar
  7. 7.
    Duchi, E., Frosini, A., Pinzani, R., Rinaldi, S.: A note on rational succession rules. Journal of Integer Sequences 6, Article 03.1.7 (2003)Google Scholar
  8. 8.
    Ferrari, L., Pergola, E., Pinzani, R., Rinaldi, S.: An algebraic characterization of the set of succession rules. Theoretical Computer Science 281, 351–367 (2002)CrossRefzbMATHMathSciNetGoogle Scholar
  9. 9.
    Ferrari, L., Pergola, E., Pinzani, R., Rinaldi, S.: Jumping succession rules and their generating functions. Discrete Mathematics 271, 29–50 (2003)CrossRefzbMATHMathSciNetGoogle Scholar
  10. 10.
    Gerhold, S.: Sequences: non-holonomicity and inequalities, ph.D. ThesisGoogle Scholar
  11. 11.
    Gessel, I.: Rational functions with nonnegative integer coefficients. In The 50th seminaire Lotharingien de Combinatoire, page Domaine Saint-Jacques. Unpublished, available at Gessels homepage March 2003Google Scholar
  12. 12.
    Halava, V., Harju, T., Hirvensalo, M.: Positivity of second order linear recurrent sequences. Discrete Applied Mathematics 154, 447–451 (2006)CrossRefzbMATHMathSciNetGoogle Scholar
  13. 13.
    Koutschan, C.: Regular languages and their generating functions: The inverse problem. Theoretical Computer Science 391, 65–74 (2008)CrossRefzbMATHMathSciNetGoogle Scholar
  14. 14.
    Laohakosol, V., Tangsupphathawat, P.: Positivity of third order linear recurrence sequences. Discrete Applied Mathematics 157, 3239–3248 (2009)CrossRefzbMATHMathSciNetGoogle Scholar
  15. 15.
    Perrin, D.: On positive matrices. Theoretical Computer Science 94(2), 357–366 (1992)CrossRefzbMATHMathSciNetGoogle Scholar
  16. 16.
    Salomaa, A., Soittola, M.: Automata-Theoretic Aspects of Formal Power Series. Springer-Verlag (1978)Google Scholar
  17. 17.
    Soittola, M.: Positive rational sequences. Theoretical Computer Science 2(3), 317–322 (1976)CrossRefzbMATHMathSciNetGoogle Scholar
  18. 18.
    Zeilberger, D.: A holonomic systems approach to special functions identities. Journal of Computational and Applied Mathematics 32, 321–368 (1990)CrossRefzbMATHMathSciNetGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Stefano Bilotta
    • 1
  • Elisa Pergola
    • 1
  • Renzo Pinzani
    • 1
  • Simone Rinaldi
    • 2
  1. 1.Dipartimento di Matematica e Informatica “Ulisse Dini”University of FlorenceFirenzeItaly
  2. 2.Dipartimento di Ingegneria Dell’Informazione e Scienze MatematicheUniversity of SienaSienaItaly

Personalised recommendations