Advertisement

Logics for Unordered Trees with Data Constraints on Siblings

  • Adrien Boiret
  • Vincent Hugot
  • Joachim Niehren
  • Ralf Treinen
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8977)

Abstract

We study counting monadic second-order logics (CMso) for unordered data trees. Our objective is to enhance this logic with data constraints for comparing string data values attached to sibling edges of a data tree. We show that CMso satisfiability becomes undecidable when adding data constraints between siblings that can check the equality of factors of data values. For more restricted data constraints that can only check the equality of prefixes, we show that it becomes decidable, and propose a related automaton model with good complexities. This restricted logic is relevant to applications such as checking well-formedness properties of semi-structured databases and file trees. Our decidability results are obtained by compilation of CMso to automata for unordered trees, where both are enhanced with data constraints in a novel manner.

Keywords

Regular Expression Expressive Power Data Constraint Deterministic Automaton String Relation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Abiteboul, S., Bourhis, P., Muscholl, A., Wu, Z.: Recursive queries on trees and data trees. In: ICDT, pp. 93–104. ACM (2013)Google Scholar
  2. 2.
    Benzaken, V., Castagna, G., Nguyen, K., Siméon, J.: Static and dynamic semantics of NoSQL languages. In: POPL, pp. 101–114. ACM (2013)Google Scholar
  3. 3.
    Boiret, A., Hugot, V., Niehren, J., Treinen, R.: Deterministic Automata for Unordered Trees. In: Fifth International Symposium on Games, Automata, Logics and Formal Verification (Gandalf) (2014)Google Scholar
  4. 4.
    Bojanczyk, M., David, C., Muscholl, A., Schwentick, T., Segoufin, L.: Two-variable logic on data words. ACM Trans. Comput. Log. 12(4), 27 (2011)CrossRefMathSciNetGoogle Scholar
  5. 5.
    Boneva, I., Talbot, J.-M.: Automata and Logics for Unranked and Unordered Trees. In: Giesl, J. (ed.) RTA 2005. LNCS, vol. 3467, pp. 500–515. Springer, Heidelberg (2005) CrossRefGoogle Scholar
  6. 6.
    Büchi, J.R.: Weak second-order arithmetic and finite automata. Mathematical Logic Quarterly 6(1–6), 66–92 (1960)CrossRefzbMATHGoogle Scholar
  7. 7.
    Comon, H., Dauchet, M., Gilleron, R., Löding, C., Jacquemard, F., Lugiez, D., Tison, S., Tommasi, M.: Tree automata techniques and applications (2007). http://www.grappa.univ-lille3.fr/tata
  8. 8.
    Courcelle, B.: The monadic second-order logic of graphs. i. recognizable sets of finite graphs. Information and computation 85(1), 12–75 (1990)CrossRefzbMATHMathSciNetGoogle Scholar
  9. 9.
    Figueira, D.: On XPath with transitive axes and data tests. In: ACM Symposium on Principles of Database, System, pp. 249–260 (2013)Google Scholar
  10. 10.
    Läuchli, H., Savioz, C.: Monadic second order definable relations on the binary tree. Journal of Symbol Logic 52(1), 219–226 (1987)CrossRefzbMATHGoogle Scholar
  11. 11.
    Müller, M., Niehren, J., Treinen, R.: The first-order theory of ordering constraints over feature trees. In: 13th annual IEEE Symposium on Logic in Computer Sience, pp. 432–443 (1998)Google Scholar
  12. 12.
    Niehren, J., Podelski, A.: Feature automata and recognizable sets of feature trees. In: Gaudel, M.-C., Jouannaud, J.-P. (eds.) CAAP 1993, FASE 1993, and TAPSOFT 1993. LNCS, vol. 668, pp. 356–375. Springer, Heidelberg (1993) CrossRefGoogle Scholar
  13. 13.
    Rabin, M.: Automata on Infinite Objects and Church’s Problem. Number 13 in Conference Board of the Mathematical Sciences Regional Conference Series in Mathematics. AMS (1972)Google Scholar
  14. 14.
    Seidl, H., Schwentick, T., Muscholl, A.: Numerical document queries. In: ACM Symposium on Principles of Database Systems, pp. 155–166 (2003)Google Scholar
  15. 15.
    Seidl, H., Schwentick, T., Muscholl, A.: Counting in trees. In: Logic and Automata. Texts in Logic and Games, vol. 2, pp. 575–612. Amsterdam University Press (2008)Google Scholar
  16. 16.
    Smolka, G.: Feature constraint logics for unification grammars. Journal of Logic Programming 12, 51–87 (1992)CrossRefzbMATHMathSciNetGoogle Scholar
  17. 17.
    Smolka, G., Treinen, R.: Records for logic programming. J. Log. Program. 18(3), 229–258 (1994)CrossRefzbMATHMathSciNetGoogle Scholar
  18. 18.
    Stockmeyer, L., Meyer, A.: Word problems requiring exponential time. In: Symposium on the Theory of Computing. Association for Computing Machinery, Association for Computing Machinery, pp. 1–9 (1973)Google Scholar
  19. 19.
    Thatcher, J.W., Wright, J.B.: Generalized finite automata theory with an application to a decision problem of second-order logic. Mathematical systems theory 2(1), 57–81 (1968)CrossRefMathSciNetGoogle Scholar
  20. 20.
    Thatcher, J.W., Wright, J.B.: Generalized finite automata with an application to the decision problem of second-order logic. Mathematical System Theory 2, 57–82 (1968)CrossRefMathSciNetGoogle Scholar
  21. 21.
    Zilio, S.D., Lugiez, D.: XML Schema, Tree Logic and Sheaves Automata. In: Nieuwenhuis, R. (ed.) RTA 2003. LNCS, vol. 2706, pp. 246–263. Springer, Heidelberg (2003) CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Adrien Boiret
    • 1
    • 2
  • Vincent Hugot
    • 2
    • 3
  • Joachim Niehren
    • 2
    • 3
  • Ralf Treinen
    • 4
  1. 1.University Lille 1LilleFrance
  2. 2.Links (INRIA Lille & LIFL, UMR CNRS 8022)LilleFrance
  3. 3.INRIASophia-antipolisFrance
  4. 4.University Paris Diderot Sorbonne Paris Cit PPS UMR 7126, CNRSParisFrance

Personalised recommendations