Division by Zero in Common Meadows

  • Jan A. Bergstra
  • Alban Ponse
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8950)


Common meadows are fields expanded with a total multiplicative inverse function. Division by zero produces an additional value denoted with “\({\textup{\textbf{a}}}\)” that propagates through all operations of the meadow signature (this additional value can be interpreted as an error element). We provide a basis theorem for so-called common cancellation meadows of characteristic zero, that is, common meadows of characteristic zero that admit a certain cancellation law.


Meadow common meadow division by zero additional value abstract datatype 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Bergstra, J.A., Bethke, I., Ponse, A.: Cancellation meadows: a generic basis theorem and some applications. The Computer Journal 56(1), 3–14 (2013)CrossRefGoogle Scholar
  2. 2.
    Bergstra, J.A., Bethke, I., Ponse, A.: Equations for formally real meadows. arXiv:1310.5011v3 [math.RA, cs.LO], this version (v3) (February 11, 2014)Google Scholar
  3. 3.
    Bergstra, J.A., Broy, M., Tucker, J.V., Wirsing, M.: On the power of algebraic specifications. In: Gruska, J., Chytil, M.P. (eds.) MFCS 1981. LNCS, vol. 118, pp. 193–204. Springer, Heidelberg (1981)Google Scholar
  4. 4.
    Bergstra, J.A., Middelburg, C.A.: Inversive meadows and divisive meadows. Journal of Applied Logic 9(3), 203–220 (2011), doi:10.1016/j.jal.2011.03.001MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Bergstra, J.A., Middelburg, C.A.: Division by zero in non-involutive meadows. arXiv:1406.2092v1 [math.RA] (June 9, 2014). To appear in Journal of Applied Logic 13(1), 1–12 (2015), doi:10.1016/j.jal.2014.10.001Google Scholar
  6. 6.
    Bergstra, J.A., Ponse, A.: Signed meadow valued probability mass functions. arXiv:1307.5173v1 [math.LO] (July 19, 2013)Google Scholar
  7. 7.
    Bergstra, J.A., Ponse, A.: Fracpairs: fractions over a reduced commutative ring. arXiv:1411.4410v1 [math.RA] (November 17, 2014)Google Scholar
  8. 8.
    Bergstra, J.A., Tucker, J.V.: The rational numbers as an abstract data type. Journal of the ACM 54(2), Article 7, 25 pages (2007)Google Scholar
  9. 9.
    Bethke, I., Rodenburg, P.H.: The initial meadows. Journal of Symbolic Logic 75(3), 888–895 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Broy, M., Wirsing, M.: On the algebraic specification of nondeterministic programming languages. In: Astesiano, E., Böhm, C. (eds.) CAAP 1981. LNCS, vol. 112, pp. 162–179. Springer, Heidelberg (1981)CrossRefGoogle Scholar
  11. 11.
    Carlström, J.: Wheels – on division by zero. Mathematical Structures in Computer Science 14(01), 143–184 (2004), doi:10.1017/S0960129503004110MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Komori, Y.: Free algebras over all fields and pseudo-fields. Report 10, pp. 9–15, Faculty of Science, Shizuoka University, Japan (1975)Google Scholar
  13. 13.
    Lang, S.: Algebra, 3rd edn. Graduate Texts in Mathematics, vol. 211. Springer (2002)Google Scholar
  14. 14.
    Ono, H.: Equational theories and universal theories of fields. Journal of the Mathematical Society of Japan 35(2), 289–306 (1983)MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Wirsing, M.: Algebraic specifications. In: van Leeuwen, J. (ed.) Handbook of Theoretical Computer Science. Volume B: Formal models and semantics, pp. 675–788. North-Holland (1990)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Jan A. Bergstra
    • 1
  • Alban Ponse
    • 1
  1. 1.Section Theory of Computer Science, Informatics Institute, Faculty of ScienceUniversity of AmsterdamThe Netherlands

Personalised recommendations