Modal Satisfiability via SMT Solving

  • Carlos Areces
  • Pascal Fontaine
  • Stephan Merz
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8950)


Modal logics extend classical propositional logic, and they are robustly decidable. Whereas most existing decision procedures for modal logics are based on tableau constructions, we propose a framework for obtaining decision procedures by adding instantiation rules to standard SAT and SMT solvers. Soundness, completeness, and termination of the procedures can be proved in a uniform and elementary way for the basic modal logic and some extensions.


Modal Logic Decision Procedure Predicate Symbol Modal Formula Hybrid Logic 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Andréka, H., van Benthem, J., Németi, I.: Modal languages and bounded fragments of predicate logic. Journal of Philosophical Logic 27, 217–274 (1998)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Areces, C., ten Cate, B.: Hybrid logics. In: Blackburn, P., Wolter, F., van Benthem, J. (eds.) Handbook of Modal Logics, pp. 821–868. Elsevier (2006)Google Scholar
  3. 3.
    Barrett, C., Sebastiani, R., Seshia, S.A., Tinelli, C.: Satisfiability modulo theories. In: Biere, A., Heule, M.J.H., van Maaren, H., Walsh, T. (eds.) Handbook of Satisfiability. Frontiers in Artificial Intelligence and Applications, vol. 185, ch. 26, pp. 825–885. IOS Press (February 2009)Google Scholar
  4. 4.
    Bauer, F.L., Wirsing, M.: Elementare Aussagenlogik. Springer, Heidelberg (1991)Google Scholar
  5. 5.
    Blackburn, P., de Rijke, M., Venema, Y.: Modal Logic. Cambridge Tracts in Theoretical Computer Science, vol. 53. Cambridge University Press, Cambridge (2001)CrossRefzbMATHGoogle Scholar
  6. 6.
    Bolander, T., Blackburn, P.: Termination for hybrid tableaus. Journal of Logic and Computation 17(3), 517–554 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Börger, E., Grädel, E., Gurevich, Y.: The Classical Decision Problem. Springer, Berlin (1997) With an appendix by C. Allauzen, B. DurandGoogle Scholar
  8. 8.
    Chandra, A., Merlin, P.: Optimal implementation of conjunctive queries in relational databases. In: Proc. 9th ACM Symp. Theory of Computing, pp. 77–90 (1977)Google Scholar
  9. 9.
    Church, A.: A note on the Entscheidungsproblem. Journal of Symbolic Logic 1, 40–41 (1936)CrossRefzbMATHGoogle Scholar
  10. 10.
    Ganzinger, H., Hustadt, U., Meyer, C., Schmidt, R.A.: A resolution-based decision procedure for extensions of K4. In: Zakharyaschev, M., Segerberg, K., de Rijke, M., Wansing, H. (eds.) Advances in Modal Logic, pp. 225–246. CSLI Publications (1998)Google Scholar
  11. 11.
    Giunchiglia, F., Sebastiani, R.: Building decision procedures for modal logics from propositional decision procedures: The case study of modal K(m). Information and Computation 162(1-2), 158–178 (2000)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Goranko, V., Passy, S.: Using the universal modality: Gains and questions. Journal of Logic and Computation 2(1), 5–30 (1992)MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Grädel, E.: Why are modal logics so robustly decidable? Bulletin EATCS 68, 90–103 (1999)MathSciNetzbMATHGoogle Scholar
  14. 14.
    Grädel, E., Kolaitis, P., Vardi, M.: On the decision problem for two-variable first-order logic. Bulletin of Symbolc Logic 3, 53–69 (1997)MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Grädel, E., Otto, M., Rosen, E.: Two-variable logic with counting is decidable. In: Proc. 12th Ann. IEEE Symp. Logic in Computer Science (LICS 1997), pp. 306–317. IEEE Comp. Soc. (1997)Google Scholar
  16. 16.
    Hustadt, U., de Nivelle, H., Schmidt, R.A.: Resolution-based methods for modal logics. Logic Journal of the IGPL 8(3), 265–292 (2000)MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Löwenheim, L.: Über Möglichkeiten im Relativkalkül. Mathematische Annalen 76, 447–470 (1915)MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    Nieuwenhuis, R., Oliveras, A., Tinelli, C.: Solving SAT and SAT Modulo Theories: From an abstract Davis-Putnam-Logemann-Loveland procedure to DPLL(T). J. ACM 53(6), 937–977 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    Ohlbach, H.J., Schmidt, R.A.: Functional translation and second-order frame properties of modal logics. Journal of Logic and Computation 7(5), 581–603 (1997)MathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    Pacholsky, L., Szwast, W., Tendera, L.: Complexity of two-variable logic with counting. In: Proc. 12th Ann. IEEE Symp. Logic in Computer Science (LICS 1997), pp. 318–327 (1997)Google Scholar
  21. 21.
    Schmidt, R.A., Hustadt, U.: First-order resolution methods for modal logics. In: Voronkov, A., Weidenbach, C. (eds.) Programming Logics. LNCS, vol. 7797, pp. 345–391. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  22. 22.
    Schmidt, R.A., Tishkovsky, D.: Using tableau to decide description logics with full role negation and identity. ACM Trans. Comput. Log. 15(1) (2014)Google Scholar
  23. 23.
    Scott, D.: A decision method for validity of sentences in two variables. Journal of Symbolic Logic 27(377), 74 (1962)Google Scholar
  24. 24.
    Sebastiani, R., Tacchella, A.: SAT techniques for modal and description logics. In: Biere, A., Heule, M., van Maaren, H., Walsh, T. (eds.) Handbook of Satisfiability. Frontiers in Artificial Intelligence and Applications, vol. 185, pp. 781–824. IOS Press (2009)Google Scholar
  25. 25.
    Turing, A.: On computable numbers, with an application to the ‘Entscheidungsproblem’. Proc. London Mathematical Society 2nd. series 42, 230–265 (1937)CrossRefzbMATHGoogle Scholar
  26. 26.
    Vardi, M.: Why is modal logic so robustly decidable? In: DIMACS Ser. Disc. Math. Theoret. Comp. Sci., vol. 31, pp. 149–184. AMS (1997)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Carlos Areces
    • 1
  • Pascal Fontaine
    • 2
    • 3
  • Stephan Merz
    • 2
    • 3
  1. 1.Universidad Nacional de Córdoba & CONICETCórdobaArgentina
  2. 2.LORIA, UMR 7503Université de LorraineVandœvre-lès-NancyFrance
  3. 3.INRIAVillers-lès-NancyFrance

Personalised recommendations