Advertisement

Immunotoxicity of Perfluoroalkylated Compounds

  • Deborah E. KeilEmail author
Part of the Molecular and Integrative Toxicology book series (MOLECUL)

Abstract

The following chapter reports on the health impacts of perfluoroalkylated compounds in the context of in vitro and in vivo immunotoxicology studies as well as epidemiology studies. In general, elevated serum PFAA levels reported in adults and children correlate with observed changes in health to include decreases in serum vaccine titers and IgE levels, or increases in antinuclear antibodies, asthma, the common cold, and gastroenteritis. Laboratory studies demonstrate direct, in vitro effects of perfluorinated compounds modulating TNF-α, IL-6 and IFN-γ. These studies may be linked mechanistically to alterations reporting decreases in vaccine antibody titers in human reports and dose-responsive, decreases in IgM antibody production in animal models. To some extent, perfluoroalkylated compounds are thought to modulate gene regulation via peroxisome proliferator activated receptor alpha (PPARα) and to a lesser extent via peroxisome proliferator activated receptor gamma (PPARγ), yet species differences affecting the expression of this receptor complicates this interpretation as an underlying mechanism in humans. Mechanisms of action beyond PPAR-mediated effects represents new directions and are also discussed. As we learn more about the relationship between perfluoroalkylated compounds and emerging health issues, this may challenge current benchmark thresholds in drinking water to ensure adequate protection for human health.

Keywords

PFOS PFOA PFAAs Immunotoxicity Immunosuppression 

References

  1. 2010/2015 PFOA Stewardship Program|PFOA and Fluorinated Telomers|OPPT|OPPTS|US EPAGoogle Scholar
  2. Andersen ME, Butenhoff JL, Chang S-C, Farrar DG, Kennedy GL et al (2008) Perfluoroalkyl acids and related chemistries–toxicokinetics and modes of action. Toxicol Sci 102:3–14CrossRefPubMedGoogle Scholar
  3. Brieger A, Bienefeld N, Hasan R, Goerlich R, Haase H (2011) Impact of perfluorooctanesulfonate and perfluorooctanoic acid on human peripheral leukocytes. Toxicol In Vitro 25:960–968. doi: 10.1016/j.tiv.2011.03.005 CrossRefPubMedGoogle Scholar
  4. Burleson FG, Burleson GR (2010) Host resistance assays including bacterial challenge models. Methods Mol Biol 598:97–108. doi: 10.1007/978-1-60761-401-2_7 CrossRefPubMedGoogle Scholar
  5. Butenhoff JL, Chang S-C, Olsen GW, Thomford PJ (2012) Chronic dietary toxicity and carcinogenicity study with potassium perfluorooctanesulfonate in Sprague Dawley rats. Toxicology 293:1–15. doi: 10.1016/j.tox.2012.01.003 CrossRefPubMedGoogle Scholar
  6. Corsini E, Avogadro A, Galbiati V, dell’Agli M, Marinovich M et al (2011) In vitro evaluation of the immunotoxic potential of perfluorinated compounds (PFCs). Toxicol Appl Pharmacol 250:108–116. doi: 10.1016/j.taap.2010.11.004 CrossRefPubMedGoogle Scholar
  7. Corsini E, Sangiovanni E, Avogadro A, Galbiati V, Viviani B et al (2012) In vitro characterization of the immunotoxic potential of several perfluorinated compounds (PFCs). Toxicol Appl Pharmacol 258:248–255CrossRefPubMedGoogle Scholar
  8. Corsini E, Luebke RW, Germolec DR, DeWitt JC (2014) Perfluorinated compounds: emerging POPs with potential immunotoxicity. Toxicol Lett 230(2):263–270CrossRefPubMedGoogle Scholar
  9. Costa G, Sartori S, Consonni D (2009) Thirty years of medical surveillance in perfluorooctanoic acid production workers. J Occup Environ Med 51(3):364–372CrossRefPubMedGoogle Scholar
  10. Dewitt JC, Copeland CB, Strynar MJ, Luebke RW (2008) Perfluorooctanoic acid-induced immunomodulation in adult C57BL/6J or C57BL/6N female mice. Environ Health Perspect 116:644–650. doi: 10.1289/ehp.10896 CrossRefPubMedCentralPubMedGoogle Scholar
  11. DeWitt JC, Shnyra A, Badr MZ, Loveless SE, Hoban D et al (2009) Immunotoxicity of perfluorooctanoic acid and perfluorooctane sulfonate and the role of peroxisome proliferator-activated receptor alpha. Crit Rev Toxicol 39:76–94. doi: 10.1080/10408440802209804 CrossRefPubMedGoogle Scholar
  12. DeWitt JC, Peden-Adams MM, Keller JM, Germolec DR (2012) Immunotoxicity of perfluorinated compounds: recent developments. Toxicol Pathol 40:300–311. doi: 10.1177/0192623311428473 CrossRefPubMedGoogle Scholar
  13. Dong G-H, Zhang Y-H, Zheng L, Liu W, Jin Y-H et al (2009) Chronic effects of perfluorooctanesulfonate exposure on immunotoxicity in adult male C57BL/6 mice. Arch Toxicol 83:805–815. doi: 10.1007/s00204-009-0424-0 CrossRefPubMedGoogle Scholar
  14. Dong G-H, Liu M-M, Wang D, Zheng L, Liang Z-F et al (2011) Sub-chronic effect of perfluorooctanesulfonate (PFOS) on the balance of type 1 and type 2 cytokine in adult C57BL6 mice. Arch Toxicol 85:1235–1244. doi: 10.1007/s00204-011-0661-x CrossRefPubMedGoogle Scholar
  15. Dong G-H, Wang J, Zhang Y-H, Liu M-M, Wang D, Zheng L, Jin Y-H (2012) Induction of p53-mediated apoptosis in splenocytes and thymocytes of C57BL/6 mice exposed to perfluorooctane sulfonate (PFOS). Toxicol Appl Pharmacol 264(2):292–299CrossRefPubMedGoogle Scholar
  16. Dong GH, Tung KY, Tsai CH, Liu MM, Wang D, Liu W, Chen PC, Jin YH, Hsieh WS, Lee YL (2013) Serum polyfluoroalkyl concentrations, asthma outcomes, and immunological markers in a case-control study of Taiwanese children. Environ Health Perspect 121(4):507PubMedCentralGoogle Scholar
  17. Fei C, McLaughlin JK, Lipworth L, Olsen J (2010) Prenatal exposure to PFOA and PFOS and risk of hospitalization for infectious diseases in early childhood. Environ Res 110:773–777. doi: 10.1016/j.envres.2010.08.004 CrossRefPubMedGoogle Scholar
  18. Fletcher T, Steenland K, Savitz D (2009) PFOA and immune biomarkers in adults exposed to PFOA in drinking water in the mid Ohio Valley. Status Rep by C8 Sci Panel. Available: http://www.c8sciencepanel.org/pdfs/Status_Report_C8_and_Immune_markers_March2009.pdf
  19. Grandjean P, Budtz-Jørgensen E (2013) Immunotoxicity of perfluorinated alkylates: calculation of benchmark doses based on serum concentrations in children. Environ Health 12:35. doi: 10.1186/1476-069X-12-35 CrossRefPubMedCentralPubMedGoogle Scholar
  20. Grandjean P, Andersen EW, Budtz-Jørgensen E, Nielsen F, Mølbak K et al (2012) Serum vaccine antibody concentrations in children exposed to perfluorinated compounds. JAMA 307:391–397. doi: 10.1001/jama.2011.2034 CrossRefPubMedGoogle Scholar
  21. Granum B, Haug LS, Namork E, Stølevik SB, Thomsen C, Aaberge IS, van Loveren H, Lovik M, Nygaard UC (2013) Pre-natal exposure to perfluoroalkyl substances may be associated with altered vaccine antibody levels and immune-related health outcomes in early childhood. J Immunotoxicol 10(4):373–379CrossRefPubMedGoogle Scholar
  22. Griesbacher T, Pommer V, Schuligoi R, Tiran B, Peskar B a (2008) Anti-inflammatory actions of perfluorooctanoic acid and peroxisome proliferator-activated receptors (PPAR) alpha and gamma in experimental acute pancreatitis. Int Immunopharmacol 8:325–329. doi: 10.1016/j.intimp.2007.08.005 CrossRefPubMedGoogle Scholar
  23. Guruge KS, Hikono H, Shimada N, Murakami K, Hasegawa J et al (2009) Effect of perfluorooctane sulfonate (PFOS) on influenza A virus-induced mortality in female B6C3F1 mice. J Toxicol Sci 34:687–691CrossRefPubMedGoogle Scholar
  24. Keil DE, Mehlmann T, Butterworth L, Peden-Adams MM (2008) Gestational exposure to perfluorooctane sulfonate suppresses immune function in B6C3F1 mice. Toxicol Sci 103:77–85. doi: 10.1093/toxsci/kfn015 CrossRefPubMedGoogle Scholar
  25. Kennedy GL, Butenhoff JL, Olsen GW, O’Connor JC, Seacat AM, Perkins RG, Farrar DG (2004) The toxicology of perfluorooctanoate. Crit Rev Toxicol 34(4):351–384CrossRefPubMedGoogle Scholar
  26. Kudo N, Suzuki-Nakajima E, Mitsumoto A, Kawashima Y (2006) Responses of the liver to perfluorinated fatty acids with different carbon chain length in male and female mice: in relation to induction of hepatomegaly, peroxisomal beta-oxidation and microsomal 1-acylglycerophosphocholine acyltransferase. Biol Pharm Bull 29:1952–1957CrossRefPubMedGoogle Scholar
  27. Lefebvre DE, Curran I, Armstrong C, Coady L, Parenteau M et al (2008) Immunomodulatory effects of dietary potassium perfluorooctane sulfonate (PFOS) exposure in adult Sprague-Dawley rats. J Toxicol Environ Health A 71:1516–1525. doi: 10.1080/15287390802391943 CrossRefPubMedGoogle Scholar
  28. Loveless SE, Ladics GS, Smith C, Holsapple MP, Woolhiser MR et al (2007) Interlaboratory study of the primary antibody response to sheep red blood cells in outbred rodents following exposure to cyclophosphamide or dexamethasone. J Immunotoxicol 4:233–238. doi: 10.1080/15476910701385687 CrossRefPubMedGoogle Scholar
  29. Loveless SE, Hoban D, Sykes G, Frame SR, Everds NE (2008) Evaluation of the immune system in rats and mice administered linear ammonium perfluorooctanoate. Toxicol Sci 105:86–96. doi: 10.1093/toxsci/kfn113 CrossRefPubMedGoogle Scholar
  30. Luster MI, Portier C, Pait DG, White KL, Gennings C et al (1992) Risk assessment in immunotoxicology. I. Sensitivity and predictability of immune tests. Fundam Appl Toxicol 18:200–210CrossRefPubMedGoogle Scholar
  31. Luster MI, Portier C, Pait DG, Rosenthal GJ, Germolec DR et al (1993) Risk assessment in immunotoxicology. II. Relationships between immune and host resistance tests. Fundam Appl Toxicol 21:71–82CrossRefPubMedGoogle Scholar
  32. Mollenhauer MAM, Bradshaw SG, Fair PA, McGuinn WD, Peden-Adams MM (2011) Effects of perfluorooctane sulfonate (PFOS) exposure on markers of inflammation in female B6C3F1 mice. J Environ Sci Health A Tox Hazard Subst Environ Eng 46:97–108. doi: 10.1080/10934529.2011.532418 CrossRefPubMedGoogle Scholar
  33. Okada E, Sasaki S, Saijo Y, Washino N, Miyashita C et al (2012) Prenatal exposure to perfluorinated chemicals and relationship with allergies and infectious diseases in infants. Environ Res 112:118–125CrossRefPubMedGoogle Scholar
  34. Peden-Adams MM, Keller JM, Eudaly JG, Berger J, Gilkeson GS et al (2008) Suppression of humoral immunity in mice following exposure to perfluorooctane sulfonate. Toxicol Sci 104:144–154. doi: 10.1093/toxsci/kfn059 CrossRefPubMedGoogle Scholar
  35. Post GB, Cohn PD, Cooper KR (2012) Perfluorooctanoic acid (PFOA), an emerging drinking water contaminant: a critical review of recent literature. Environ Res 116:93–117CrossRefPubMedGoogle Scholar
  36. Qazi MR, Bogdanska J, Butenhoff JL, Nelson BD, DePierre JW et al (2009) High-dose, short-term exposure of mice to perfluorooctanesulfonate (PFOS) or perfluorooctanoate (PFOA) affects the number of circulating neutrophils differently, but enhances the inflammatory responses of macrophages to lipopolysaccharide (LPS) in a similar fashion. Toxicology 262:207–214. doi: 10.1016/j.tox.2009.06.010 CrossRefPubMedGoogle Scholar
  37. Qazi MR, Nelson BD, DePierre JW, Abedi-Valugerdi M (2012) High-dose dietary exposure of mice to perfluorooctanoate or perfluorooctane sulfonate exerts toxic effects on myeloid and B-lymphoid cells in the bone marrow and these effects are partially dependent on reduced food consumption. Food Chem Toxicol 50(9):2955–2963CrossRefPubMedGoogle Scholar
  38. Rosen MB, Schmid JR, Corton JC, Zehr RD, Das KP et al (2010) Gene expression profiling in wild-type and PPARα-null mice exposed to perfluorooctane sulfonate reveals PPARα-independent effects. PPAR Res 2010. doi: 10.1155/2010/794739
  39. Selgrade MK (1999) Use of immunotoxicity data in health risk assessments: uncertainties and research to improve the process. Toxicology 133:59–72CrossRefPubMedGoogle Scholar
  40. Selgrade MK (2007) Immunotoxicity: the risk is real. Toxicol Sci 100:328–332. doi: 10.1093/toxsci/kfm244 CrossRefPubMedGoogle Scholar
  41. Starkov AA, Wallace KB (2002) Structural determinants of fluorochemical-induced mitochondrial dysfunction. Toxicol Sci 66:244–252CrossRefPubMedGoogle Scholar
  42. Takacs ML, Abbott BD (2007) Activation of mouse and human peroxisome proliferator-activated receptors (alpha, beta/delta, gamma) by perfluorooctanoic acid and perfluorooctane sulfonate. Toxicol Sci 95:108–117. doi: 10.1093/toxsci/kfl135 CrossRefPubMedGoogle Scholar
  43. Vanden Heuvel JP, Thompson JT, Frame SR, Gillies PJ (2006) Differential activation of nuclear receptors by perfluorinated fatty acid analogs and natural fatty acids: a comparison of human, mouse, and rat peroxisome proliferator-activated receptor-alpha, -beta, and -gamma, liver X receptor-beta, and retinoid X rec. Toxicol Sci 92:476–489. doi: 10.1093/toxsci/kfl014 CrossRefPubMedGoogle Scholar
  44. Wang I-J, Hsieh W-S, Chen C-Y, Fletcher T, Lien G-W et al (2011) The effect of prenatal perfluorinated chemicals exposures on pediatric atopy. Environ Res 111:785–791CrossRefPubMedGoogle Scholar
  45. White KL, Sheth CM, Peachee VL (2007) Comparison of primary immune responses to SRBC and KLH in rodents. J Immunotoxicol 4:153–158. doi: 10.1080/15476910701337688 CrossRefPubMedGoogle Scholar
  46. Yang Q, Abedi-Valugerdi M, Xie Y, Zhao X-Y, Möller G et al (2002) Potent suppression of the adaptive immune response in mice upon dietary exposure to the potent peroxisome proliferator, perfluorooctanoic acid. Int Immunopharmacol 2:389–397CrossRefPubMedGoogle Scholar
  47. Zhang YH, Wang J, Dong GH, Liu MM, Wang D, Zheng L, Jin YH (2013) Mechanism of perfluorooctanesulfonate (PFOS)-induced apoptosis in the immunocyte. J Immunotoxicol 10(1):49–58CrossRefPubMedGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  1. 1.Department of Microbiology and ImmunologyMontana State UniversityBozemanUSA

Personalised recommendations