Spectroscopy and Microscopy of Graphene Oxide and Reduced Graphene Oxide

  • Matthew P. McDonald
  • Yurii Morozov
  • Jose H. Hodak
  • Masaru Kuno

Abstract

Graphene oxide (GO) is an important material that provides a scalable approach for obtaining chemically derived graphene. Its optical and electrical properties are largely determined by the presence of oxygen-containing functionalities, which decorate its basal plane. This chemical derivatization results in useful properties such as the existence of a band gap as well as emission spanning both the visible and near infrared. Notably, GO’s optical and electrical properties can be altered through reduction, which proceeds through the removal of these oxygen-containing functional groups. However, widely variable behavior has been observed regarding the evolution of GO’s optical response during reduction. These discrepancies arise from the different reduction methods being used and, in part, from the fact that nearly all prior measurements have been ensemble studies. Consequently, detailed mechanistic studies of GO reduction are needed which can transcend the limitations of ensemble averaging.

In this chapter, we show the spectroscopic evolution of GO’s optical properties during photoreduction at the single-sheet level. Laser-induced reduction, in particular, offers a unique and potentially controllable method for producing reduced GO (rGO), a material with properties similar to those of graphene. However, given the complexity of GO’s photoreduction mechanism, microscopic monitoring of the process is essential to understanding and ultimately exploiting this approach.

Keywords

Graphene oxide Reduced graphene oxide Photolysis Reduction Photobrightening Absorption Emission Absorption coefficient Fluorescence intermittency 

Notes

Acknowledgements

MK thanks the ACS PRF (Type ND 51675) and the Army Research Office (W911NF-12-1-0578) for financial support. JHH thanks CONICET for the international cooperation funds [D979 (25-03-2013)], FONCyT for research grant P.BID2012 PICT-2041, and University of Buenos Aires for grants UBACYT 2015-2017 20020130100643BA and UBACYT 01-w971.

References

  1. 1.
    Novoselov KS, Geim AK, Morozov SV et al (2004) Electric field effect in atomically thin carbon films. Science 306:666–669CrossRefGoogle Scholar
  2. 2.
    Nair RR, Blake P, Grigorenko AN et al (2008) Fine structure constant defines visual transparency of graphene. Science 320:1308CrossRefGoogle Scholar
  3. 3.
    Hwang EH, Adam S, Das Sarma S (2007) Carrier transport in two-dimensional graphene layers. Phys Rev Lett 98:186806-1–186806-4Google Scholar
  4. 4.
    Wu Z-S, Ren W, Gao L et al (2009) Synthesis of graphene sheets with high electrical conductivity and good thermal stability by hydrogen arc discharge exfoliation. ACS Nano 3:411–417CrossRefGoogle Scholar
  5. 5.
    Balandin AA, Ghosh S, Bao W et al (2008) Superior thermal conductivity of single-layer graphene. Nano Lett 8:902–907CrossRefGoogle Scholar
  6. 6.
    Kim KS, Zhao Y, Jang H et al (2009) Large-scale pattern growth of graphene films for stretchable transparent electrodes. Nature 457:706–710CrossRefGoogle Scholar
  7. 7.
    Wang X, Ouyang Y, Li X et al (2008) Room-temperature all-semiconducting sub-10-nm graphene nanoribbon field-effect transistors. Phys Rev Lett 100:206803-1–206803-4Google Scholar
  8. 8.
    Chae SJ, Gunes F, Kim KK et al (2009) Synthesis of large-area graphene layers on poly-nickel substrate by chemical vapor deposition: wrinkle formation. Adv Mater 21:2328–2333CrossRefGoogle Scholar
  9. 9.
    Emtsev KV, Bostwick A, Horn K et al (2009) Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide. Nat Mater 8:203–207CrossRefGoogle Scholar
  10. 10.
    Zhang Y-L, Guo L, Xia H et al (2014) Photoreduction of graphene oxides: methods, properties, and applications. Adv Opt Mater 2:10–28CrossRefGoogle Scholar
  11. 11.
    Brodie BC (1859) On the atomic weight of graphite. Philos Trans R Soc Lond 149:249–259CrossRefGoogle Scholar
  12. 12.
    Hummers WS, Offeman RE (1958) Preparation of graphitic oxide. J Am Chem Soc 80:1339–1339CrossRefGoogle Scholar
  13. 13.
    Lerf A, He H, Forster M et al (1998) Structure of graphite oxide revisited. J Phys Chem B 102:4477–4482CrossRefGoogle Scholar
  14. 14.
    Krishnan D, Kim F, Luo J et al (2012) Energetic graphene oxide: challenges and opportunities. Nano Today 7:137–152CrossRefGoogle Scholar
  15. 15.
    Stankovich S, Dikin DA, Piner RD et al (2007) Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide. Carbon 45:1558–1565CrossRefGoogle Scholar
  16. 16.
    Wang X, Zhi L, Müllen K (2008) Transparent, conductive graphene electrodes for dye-sensitized solar cells. Nano Lett 8:323–327CrossRefGoogle Scholar
  17. 17.
    Gilje S, Dubin S, Badakhshan A et al (2010) Photothermal deoxygenation of graphene oxide for patterning and distributed ignition applications. Adv Mater 22:419–423CrossRefGoogle Scholar
  18. 18.
    Sokolov DA, Shepperd KR, Orlando TM (2010) Formation of graphene features from direct laser-induced reduction of graphite oxide. J Phys Chem Lett 1:2633–2636CrossRefGoogle Scholar
  19. 19.
    Erickson K, Erni R, Lee Z et al (2010) Determination of the local chemical structure of graphene oxide and reduced graphene oxide. Adv Mater 22:4467–4472CrossRefGoogle Scholar
  20. 20.
    Paredes JI, Villar-Rodil S, Solis-Fernandez P et al (2009) Atomic force and scanning tunneling microscopy imaging of graphene nanosheets derived from graphite oxide. Langmuir 25:5957–5968CrossRefGoogle Scholar
  21. 21.
    Sokolov DA, Morozov YV, McDonald MP et al (2014) Direct observation of single layer graphene oxide reduction through spatially resolved, single sheet absorption/emission microscopy. Nano Lett 14:3172–3179CrossRefGoogle Scholar
  22. 22.
    Zhou Y, Bao Q, Varghese B et al (2010) Microstructuring of graphene oxide nanosheets using direct laser writing. Adv Mater 22:67–71CrossRefGoogle Scholar
  23. 23.
    Eda G, Lin Y-Y, Mattevi C et al (2010) Blue photoluminescence from chemically derived graphene oxide. Adv Mater 22:505–509CrossRefGoogle Scholar
  24. 24.
    Shang J, Ma L, Li J et al (2012) The origin of fluorescence from graphene oxide. Sci Rep 2:792-1–792-8CrossRefGoogle Scholar
  25. 25.
    Andryushina NS, Stroyuk OL, Dudarenko GV et al (2013) Photopolymerization of acrylamide induced by colloidal graphene oxide. J Photochem Photobiol A 256:1–6CrossRefGoogle Scholar
  26. 26.
    Li D, Muller MB, Gilje S et al (2008) Processable aqueous dispersions of graphene nanosheets. Nat Nanotechnol 3:101–105CrossRefGoogle Scholar
  27. 27.
    Chien C-T, Li S-S, Lai W-J et al (2012) Tunable photoluminescence from graphene oxide. Angew Chem Int Ed 51:6662–6666CrossRefGoogle Scholar
  28. 28.
    Exarhos AL, Turk ME, Kikkawa JM (2013) Ultrafast spectral migration of photoluminescence in graphene oxide. Nano Lett 13:344–349CrossRefGoogle Scholar
  29. 29.
    Galande C, Mohite AD, Naumov AV et al (2011) Quasi-molecular fluorescence from graphene oxide. Sci Rep 1:85-1–85-5CrossRefGoogle Scholar
  30. 30.
    Luo Z, Vora PM, Mele EJ et al (2009) Photoluminescence and band gap modulation in graphene oxide. Appl Phys Lett 94:111909-1–111909-3Google Scholar
  31. 31.
    Loh KP, Bao Q, Eda G et al (2010) Graphene oxide as a chemically tunable platform for optical applications. Nat Chem 2:1015–10024CrossRefGoogle Scholar
  32. 32.
    Gokus T, Nair RR, Bonetti A et al (2009) Making graphene luminescent by oxygen plasma treatment. ACS Nano 3:3963–3968CrossRefGoogle Scholar
  33. 33.
    McDonald MP, Eltom A, Vietmeyer F et al (2013) Direct observation of spatially heterogeneous single-layer graphene oxide reduction kinetics. Nano Lett 13:5777–5784CrossRefGoogle Scholar
  34. 34.
    Cuong TV, Pham VH, Tran QT et al (2010) Photoluminescence and raman studies of graphene thin films prepared by reduction of graphene oxide. Mater Lett 64:399–401CrossRefGoogle Scholar
  35. 35.
    Chen J-L, Yan X-P (2010) A dehydration and stabilizer-free approach to production of stable dispersion of graphene nanosheets. J Mater Chem 20:4328–4332CrossRefGoogle Scholar
  36. 36.
    Hou X-L, Li J-L, Drew SC et al (2013) Tuning radical species in graphene oxide in aqueous solution by photoirradiation. J Phys Chem C 117:6788–6793CrossRefGoogle Scholar
  37. 37.
    Li J-L, Kudin KN, McAllister MJ et al (2006) Oxygen-driven unzipping of graphitic materials. Phys Rev Lett 96:176101-1–176101-4Google Scholar
  38. 38.
    Giblin J, Vietmeyer F, McDonald MP et al (2011) Single nanowire extinction spectroscopy. Nano Lett 11:3307–3311CrossRefGoogle Scholar
  39. 39.
    Vietmeyer F, McDonald MP, Kuno M (2012) Single nanowire microscopy and spectroscopy. J Phys Chem C 116:12379–12396CrossRefGoogle Scholar
  40. 40.
    McDonald MP, Vietmeyer F, Kuno M (2012) Direct measurement of single CdSe nanowire extinction polarization anisotropies. J Phys Chem Lett 3:2215–2220CrossRefGoogle Scholar
  41. 41.
    Vietmeyer F, Tchelidze T, Tsou V et al (2012) Electric field-induced emission enhancement and modulation in individual CdSe nanowires. ACS Nano 6:9133–9140CrossRefGoogle Scholar
  42. 42.
    McDonald MP, Vietmeyer F, Aleksiuk D et al (2013) Supercontinuum spatial modulation spectroscopy: detection and noise limitations. Rev Sci Instrum 84:113104-1–113104-7CrossRefGoogle Scholar
  43. 43.
    Geim AK, Novoselov KS (2007) The rise of graphene. Nat Mater 6:183–191CrossRefGoogle Scholar
  44. 44.
    Dreyer DR, Park S, Bielawski CW et al (2010) The chemistry of graphene oxide. Chem Soc Rev 39:228–240CrossRefGoogle Scholar
  45. 45.
    Chen W, Yan L (2010) Preparation of graphene by a low-temperature thermal reduction at atmosphere pressure. Nanoscale 2:559–563CrossRefGoogle Scholar
  46. 46.
    Shulga YM, Martynenko VM, Muradyan VE et al (2010) Gaseous products of thermo- and photo-reduction of graphite oxide. Chem Phys Lett 498:287–291CrossRefGoogle Scholar
  47. 47.
    Eda G, Fanchini G, Chhowalla M (2008) Large area ultrathin films of reduced graphene oxide as a transparent and flexible electronic material. Nat Nanotechnol 3:270–274CrossRefGoogle Scholar
  48. 48.
    Cote LJ, Cruz-Silva R, Huang J (2009) Flash reduction and patterning of graphite oxide and its polymer composite. J Am Chem Soc 131:11027–11032CrossRefGoogle Scholar
  49. 49.
    Matsumoto Y, Koinuma M, Ida S et al (2011) Photoreaction of graphene oxide nanosheets in water. J Phys Chem C 115:19280–19286CrossRefGoogle Scholar
  50. 50.
    Guo H, Peng M, Zhu Z et al (2013) Preparation of reduced graphene oxide by infrared irradiation induced photothermal reduction. Nanoscale 5:9040–9048CrossRefGoogle Scholar
  51. 51.
    Abdelsayed V, Moussa S, Hassan HM et al (2010) Photothermal deoxygenation of graphite oxide with laser excitation in solution and graphene-aided increase in water temperature. J Phys Chem Lett 1:2804–2809CrossRefGoogle Scholar
  52. 52.
    Sokolov DA, Rouleau CM, Geohegan DB et al (2013) Excimer laser reduction and patterning of graphite oxide. Carbon 53:81–89CrossRefGoogle Scholar
  53. 53.
    Huang L, Liu Y, Ji L-C et al (2011) Pulsed laser assisted reduction of graphene oxide. Carbon 49:2431–2436CrossRefGoogle Scholar
  54. 54.
    Trusovas R, Ratautas K, Raciukaitis G et al (2013) Reduction of graphite oxide to graphene with laser irradiation. Carbon 52:574–582CrossRefGoogle Scholar
  55. 55.
    Zhang Y, Guo L, Wei S et al (2010) Direct imprinting of microcircuits of graphene oxides film by femtosecond laser reduction. Nano Today 5:15–20CrossRefGoogle Scholar
  56. 56.
    Wang D, Carlson MT, Richardson HH et al (2011) Absorption cross section and interfacial thermal conductance from an individual optically excited single-walled carbon nanotube. ACS Nano 5:7391–7396CrossRefGoogle Scholar
  57. 57.
    Jeong H-K, Lee YP, Jin MH et al (2009) Thermal stability of graphite oxide. Chem Phys Lett 470:255–258CrossRefGoogle Scholar
  58. 58.
    Plotnikov VG, Smirnov VA, Alfimov MV et al (2011) The graphite oxide photoreduction mechanism. High Energy Chem 45:411–415CrossRefGoogle Scholar
  59. 59.
    Lahaye RJWE, Jeong HK, Park CY et al (2009) Density functional theory of graphite oxide for different oxidation levels. Phys Rev B 79:125435-1–125435-8CrossRefGoogle Scholar
  60. 60.
    Smirnov VA, Shul’ga YM, Denisov NN et al (2012) Photoreduction of graphite oxide at different temperatures. Nanotechnol Russia 7:156–163CrossRefGoogle Scholar
  61. 61.
    Ghaderi N, Paressi M (2010) First-principle study of hydroxyl functional groups on pristine, defected graphene, and graphene epoxide. J Phys Chem C 114:21625–21630CrossRefGoogle Scholar
  62. 62.
    Sorescu DC, Jordan KD (2001) Theoretical study of oxygen adsorption on graphite and the (8,0) single-walled carbon nanotube. J Phys Chem B 105:11227–11232CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Matthew P. McDonald
    • 1
  • Yurii Morozov
    • 1
    • 2
  • Jose H. Hodak
    • 3
  • Masaru Kuno
    • 1
  1. 1.Department of Chemistry and BiochemistryUniversity of Notre DameNotre DameUSA
  2. 2.Department of PhysicsTaras Shevchenko National University of KievKievUkraine
  3. 3.INQUIMAE—Departamento de Química Inorgánica, Analítica y Química Físca, Facultad de Ciencias Exactas y NaturalesUniversity of Buenos AiresBuenos AiresArgentina

Personalised recommendations