Recent Developments and Trends in Redox Flow Batteries

  • Liang Su
  • Jeffrey A. Kowalski
  • Kyler J. Carroll
  • Fikile R. BrushettEmail author
Part of the Green Energy and Technology book series (GREEN)


Stationary energy storage systems are needed to facilitate the widespread integration of intermittent renewable electricity generators, such as solar photovoltaic and wind turbines, and to improve the energy efficiency of the electrical grid.  While no single technology can meet all needs, redox flow batteries (RFBs) have shown a favorable balance of cost, safety, and performance for many high-value applications.  RFBs are rechargeable electrochemical devices that utilize the reversible redox reactions of two soluble electroactive species for energy storage.  A compelling feature of the RFB configuration is the independent scaling of power and energy which enables cost-effective implementation of electrochemical couples with low energy density.  Aqueous RFBs have been the subject of the vast majority of research efforts to date, which have yielded industry-level demonstrations.  By comparison, non-aqueous RFBs are still in their infancy but have the potential for high energy density due to the extended stability window of non-aqueous electrolytes and the enriched selection of redox materials due to the broad variety of organic solvents.  This chapter aims to introduce emerging, potentially transformative, strategies for enhancing RFB technologies through molecular design, electrolyte development, and cell-level engineering.  Detailed discussions focus on recent developments in redox active materials (inorganic – aqueous, organic – aqueous, inorganic – non-aqueous, and organic – non-aqueous) and in system design (interdigitated flow fields, semi-solid flow cells, and hybrid flow cells).  Future research directions and key challenges for RFB technologies are also highlighted.


Negative Electrode Propylene Carbonate Coulombic Efficiency Redox Flow Vanadium Redox Flow Batterie 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



The authors gratefully acknowledge financial support from the Joint Center for Energy Storage Research, an Energy Innovation Hub funded by the U.S. Department of Energy, Office of Science, Basic Energy Sciences, and from the Massachusetts Institute of Technology Energy Initiative’s (MITei) Seed Fund Program. In addition, we thank Jarrod Milshtein and Apurba Sakti for stimulating discussions and for assistance in figure development.


  1. 1.
    International Energy Agency (2014) Key world energy statisticsGoogle Scholar
  2. 2.
    Hojjati B, Wade SH (2012) US household energy consumption and intensity trends: a decomposition approach. Energy Policy 48:304–314CrossRefGoogle Scholar
  3. 3.
    U.S. Energy Information Administration (2011) Annual energy review.
  4. 4.
    Rising above the gathering storm: energizing and employing America for a brighter economic future. In: Committee on prospering in the global economy of the 21st century: an agenda for American science and technology; Committee on Science, Engineering, and Public Policy. National Academies Press, Washington, D.C., 2007Google Scholar
  5. 5.
    Ehleringer JR, Cerling TE, Dearing MD (2005) In: Ehleringer JR, Cerling TE, Dearing MD (eds) A history of atmospheric CO2 and its effects on plants, animals, and ecosystems. Springer, New YorkGoogle Scholar
  6. 6.
    Stocker T, Qin D, Plattner G-K (2013) Climate change 2013: the physical science basis. Working group I contributions to the IPCC fifth assessment report of the intergovernmental panel on climate changeGoogle Scholar
  7. 7.
    International Energy Agency (2012) Energy technology perspectives 2012: pathways to a clean energy systemGoogle Scholar
  8. 8.
    Chu S, Majumdar A (2012) Opportunities and challenges for a sustainable energy future. Nature 488:294–303. doi: 10.1038/nature11475 CrossRefGoogle Scholar
  9. 9.
    U.S. Department of Energy (2010) Smart grid system reportGoogle Scholar
  10. 10.
    U.S. Department of Energy (2013) Grid energy storageGoogle Scholar
  11. 11.
    Akhil AA, Boyes JD, Butler PC, Doughty DH (2010) Batteries for electrical energy storage applications. In: Reddy T (ed) Linden’s handbook of battery, Chap. 30, 4th edn. McGraw-Hill, New YorkGoogle Scholar
  12. 12.
    U.S. Department of Energy (2007) Basic research needs for electrical energy storageGoogle Scholar
  13. 13.
    International Energy Agency (2014) Technology roadmap: energy storage.,36573,en.html. Accessed 10 April 2014
  14. 14.
    Electric Power Research Institute (2003) DOE handbook of energy storage for transmission and distribution applicationsGoogle Scholar
  15. 15.
    Akhil AA, Huff G, Currier AB, Kaun BC, Rastler DM, Chen SB, Cotter AL, Bradshaw DT, Gauntlett WD (2013) DOE/EPRI 2013 electricity storage handbook in collaboration with NRECA. Sandia National LaboratoriesGoogle Scholar
  16. 16.
    Electric Power Research Institute (2010) Electricity energy storage technology optionsGoogle Scholar
  17. 17.
    International Energy Agency (2013) Pumped storage provides grid reliability even with net generation loss. Accessed 10 Oct 2014
  18. 18.
    ARPA-E. U.S. Department of Energy. Grid-scale rampable intermittent dispatchable storage. Accessed 05 Jan 2015
  19. 19.
    U.S. Department of Energy (2014) Joint center for energy storage. Accessed 05 Jan 2015
  20. 20.
    Shin S-H, Yun S-H, Moon S-H (2013) A review of current developments in non-aqueous redox flow batteries: characterization of their membranes for design perspective. RSC Adv 3:9095–9116. doi: 10.1039/C3RA00115F CrossRefGoogle Scholar
  21. 21.
    Schwenzer B, Zhang J, Kim S, Li L, Liu J, Yang Z (2011) Membrane development for vanadium redox flow batteries. ChemSusChem 4:1388–1406. doi: 10.1002/cssc.201100068 CrossRefGoogle Scholar
  22. 22.
    Li X, Zhang H, Mai Z, Zhang H, Vankelecom I (2011) Ion exchange membranes for vanadium redox flow battery (VRB) applications. Energy Environ Sci 4:1147. doi: 10.1039/c0ee00770f CrossRefGoogle Scholar
  23. 23.
    Chakrabarti MH, Brandon NP, Hajimolana SA, Tariq F, Yufit V, Hashim MA, Hussain MA, Low CTJ, Aravind PV (2014) Application of carbon materials in redox flow batteries. J Power Sources 253:150–166. doi: 10.1016/j.jpowsour.2013.12.038 CrossRefGoogle Scholar
  24. 24.
    Parasuraman A, Lim TM, Menictas C, Skyllas-Kazacos M (2013) Review of material research and development for vanadium redox flow battery applications. Electrochim Acta 101:27–40. doi: 10.1016/j.electacta.2012.09.067 CrossRefGoogle Scholar
  25. 25.
    Li X, Sabir I (2005) Review of bipolar plates in PEM fuel cells: flow-field designs. Int J Hydrogen Energy 30:359–371. doi: 10.1016/j.ijhydene.2004.09.019 CrossRefGoogle Scholar
  26. 26.
    Alotto P, Guarnieri M, Moro F (2014) Redox flow batteries for the storage of renewable energy: a review. Renew Sustain Energy Rev 29:325–335. doi: 10.1016/j.rser.2013.08.001 CrossRefGoogle Scholar
  27. 27.
    Wang W, Luo Q, Li B, Wei X, Li L, Yang Z (2013) Recent progress in redox flow battery research and development. Adv Funct Mater 23:970–986. doi: 10.1002/adfm.201200694 CrossRefGoogle Scholar
  28. 28.
    Leung P, Li X, de León CP, Berlouis L, Low CTJ, Walsh FC (2012) Progress in redox flow batteries, remaining challenges and their applications in energy storage. RSC Adv 2:10125–10156. doi: 10.1039/C2RA21342G CrossRefGoogle Scholar
  29. 29.
    Yang Z, Zhang J, Kintner-Meyer MCW, Lu X, Choi D, Lemmon JP, Liu J (2011) Electrochemical energy storage for green grid. Chem Rev 111:3577–3613. doi: 10.1021/cr100290v CrossRefGoogle Scholar
  30. 30.
    Weber AZ, Mench MM, Meyers JP, Ross PN, Gostick JT, Liu Q (2011) Redox flow batteries: a review. J Appl Electrochem 41:1137–1164. doi: 10.1007/s10800-011-0348-2 CrossRefGoogle Scholar
  31. 31.
    Skyllas-Kazacos M, Chakrabarti MH, Hajimolana SA, Mjalli FS, Saleem M (2011) Progress in flow battery research and development. J Electrochem Soc 158:R55–R79. doi: 10.1149/1.3599565 CrossRefGoogle Scholar
  32. 32.
    Viswanathan V, Crawford A, Stephenson D, Kim S, Wang W, Li B, Coffey G, Thomsen E, Graff G, Balducci P, Kintner-Meyer M, Sprenkle V (2014) Cost and performance model for redox flow batteries. J Power Sources 247:1040–1051. doi: 10.1016/j.jpowsour.2012.12.023 CrossRefGoogle Scholar
  33. 33.
    LaMonica M (2013) Enervault novel battery technology. MIT Technol Rev. Accessed 10 Sep 2014
  34. 34.
    Vanysek P (2014) Electrochemical series. In: Haynes WM (ed) CRC handbook of chemistry and physics, 95th edn. Taylor & Francis Group, Boca Raton, pp 5-80–5-89Google Scholar
  35. 35.
    Reid MA, Gahn RF (1977) Factors affecting the open-circuit voltage and electrode kinetics of some iron/titanium redox flow cells. NASA-TM X-73669Google Scholar
  36. 36.
    Wang W, Kim S, Chen B, Nie Z, Zhang J, Xia G-G, Li L, Yang Z (2011) A new redox flow battery using Fe/V redox couples in chloride supporting electrolyte. Energy Environ Sci 4:4068–4073. doi: 10.1039/C0EE00765J CrossRefGoogle Scholar
  37. 37.
    Lopez-Atalaya M, Codina G, Perez JR, Vazquez JL, Aldaz A (1992) Optimization studies on a Fe/Cr redox flow battery. J Power Sources 39:147–154. doi: 10.1016/0378-7753(92)80133-V CrossRefGoogle Scholar
  38. 38.
    Skyllas-Kazacos M, Grossmith F (1987) Efficient vanadium redox flow cell. J Electrochem Soc 134:2950–2953. doi: 10.1149/1.2100321 CrossRefGoogle Scholar
  39. 39.
    Zhou H, Zhang H, Zhao P, Yi B (2006) A comparative study of carbon felt and activated carbon based electrodes for sodium polysulfide/bromine redox flow battery. Electrochim Acta 51:6304–6312. doi: 10.1016/j.electacta.2006.03.106 CrossRefGoogle Scholar
  40. 40.
    Skyllas-Kazacos M (2003) Novel vanadium chloride/polyhalide redox flow battery. J Power Sources 124:299–302. doi: 10.1016/S0378-7753(03)00621-9 CrossRefGoogle Scholar
  41. 41.
    Xue F-Q, Wang Y-L, Wang W-H, Wang X-D (2008) Investigation on the electrode process of the Mn(II)/Mn(III) couple in redox flow battery. Electrochim Acta 53:6636–6642. doi: 10.1016/j.electacta.2008.04.040 CrossRefGoogle Scholar
  42. 42.
    Fang B, Iwasa S, Wei Y, Arai T, Kumagai M (2002) A study of the Ce(III)/Ce(IV) redox couple for redox flow battery application. Electrochim Acta 47:3971–3976. doi: 10.1016/S0013-4686(02)00370-5 CrossRefGoogle Scholar
  43. 43.
    Bartolozzi M (1989) Development of redox flow batteries. A historical bibliography. J Power Sources 27:219–234. doi: 10.1016/0378-7753(89)80037-0 CrossRefGoogle Scholar
  44. 44.
    Hagedorn N (1984) NASA redox storage system development project. NASA-TM-83677Google Scholar
  45. 45.
    Zhao P, Zhang H, Zhou H, Yi B (2005) Nickel foam and carbon felt applications for sodium polysulfide/bromine redox flow battery electrodes. Electrochim Acta 51:1091–1098. doi: 10.1016/j.electacta.2005.06.008 CrossRefGoogle Scholar
  46. 46.
    Scamman DP, Reade GW, Roberts EPL (2009) Numerical modelling of a bromide–polysulphide redox flow battery: Part 1: modelling approach and validation for a pilot-scale system. J Power Sources 189:1220–1230. doi: 10.1016/j.jpowsour.2009.01.071 CrossRefGoogle Scholar
  47. 47.
    Scamman DP, Reade GW, Roberts EPL (2009) Numerical modelling of a bromide-polysulphide redox flow battery. Part 2: evaluation of a utility-scale system. J Power Sources 189:1231–1239. doi: 10.1016/j.jpowsour.2009.01.076 CrossRefGoogle Scholar
  48. 48.
    Sum E, Rychcik M, Skyllas-kazacos M (1985) Investigation of the V(V)/V(IV) system for use in the positive half-cell of a redox battery. J Power Sources 16:85–95. doi: 10.1016/0378-7753(85)80082-3 CrossRefGoogle Scholar
  49. 49.
    Sum E, Skyllas-Kazacos M (1985) A study of the V(II)/V(III) redox couple for redox flow cell applications. J Power Sources 15:179–190. doi: 10.1016/0378-7753(85)80071-9 CrossRefGoogle Scholar
  50. 50.
    Skyllas-Kazacos M, Rychcik M, Robins RG, Fane AG, Green MA (1986) New all-vanadium redox flow cell. J Electrochem Soc 133:1057–1058. doi: 10.1149/1.2108706 CrossRefGoogle Scholar
  51. 51.
    Li B, Gu M, Nie Z, Shao Y, Luo Q, Wei X, Li X, Xiao J, Wang C, Sprenkle V, Wang W (2013) Bismuth nanoparticle decorating graphite felt as a high-performance electrode for an all-vanadium redox flow battery. Nano Lett 13:1330–1335. doi: 10.1021/nl400223v CrossRefGoogle Scholar
  52. 52.
    Li B, Gu M, Nie Z, Wei X, Wang C, Sprenkle V, Wang W (2014) Nanorod niobium oxide as powerful catalysts for an all vanadium redox flow battery. Nano Lett 14:158–165. doi: 10.1021/nl403674a CrossRefGoogle Scholar
  53. 53.
    Kazacos M, Cheng M, Skyllas-Kazacos M (1990) Vanadium redox cell electrolyte optimization studies. J Appl Electrochem 20:463–467. doi: 10.1007/BF01076057 CrossRefGoogle Scholar
  54. 54.
    Li L, Kim S, Wang W, Vijayakumar M, Nie Z, Chen B, Zhang J, Xia G, Hu J, Graff G, Liu J, Yang Z (2011) A stable vanadium redox-flow battery with high energy density for large-scale energy storage. Adv Energy Mater 1:394–400. doi: 10.1002/aenm.201100008 CrossRefGoogle Scholar
  55. 55.
    Kim S, Thomsen E, Xia G, Nie Z, Bao J, Recknagle K, Wang W, Viswanathan V, Luo Q, Wei X, Crawford A, Coffey G, Maupin G, Sprenkle V (2013) 1 kW/1 kWh advanced vanadium redox flow battery utilizing mixed acid electrolytes. J Power Sources 237:300–309. doi: 10.1016/j.jpowsour.2013.02.045 CrossRefGoogle Scholar
  56. 56.
    Poizot P, Dolhem F (2011) Clean energy new deal for a sustainable world: from non-CO2 generating energy sources to greener electrochemical storage devices. Energy Environ Sci 4:2003–2019. doi: 10.1039/C0EE00731E CrossRefGoogle Scholar
  57. 57.
    Huskinson B, Marshak MP, Suh C, Er S, Gerhardt MR, Galvin CJ, Chen X, Aspuru-Guzik A, Gordon RG, Aziz MJ (2014) A metal-free organic-inorganic aqueous flow battery. Nature 505:195–198. doi: 10.1038/nature12909 CrossRefGoogle Scholar
  58. 58.
    Huskinson B, Marshak MP, Gerhardt MR, Aziz MJ (2014) Cycling of a quinone-bromide flow battery for large-scale electrochemical energy storage. ECS Trans 61:27–30. doi: 10.1149/06137.0027ecst CrossRefGoogle Scholar
  59. 59.
    Chambers JQ (1974) Electrochemistry of quinones. In: Patai S (ed) The chemistry of the quinonoid compounds Part 1, Chap. 14. Wiley, New YorkGoogle Scholar
  60. 60.
    Bailey SI, Ritchie IM (1985) A cyclic voltammetric study of the aqueous electrochemistry of some quinones. Electrochim Acta 30:3–12. doi: 10.1016/0013-4686(85)80051-7 CrossRefGoogle Scholar
  61. 61.
    Huskinson B, Nawar S, Gerhardt MR, Aziz MJ (2013) Novel quinone-based couples for flow batteries. ECS Trans 53:101–105. doi: 10.1149/05307.0101ecst CrossRefGoogle Scholar
  62. 62.
    Xu Y, Wen Y-H, Cheng J, Cao G-P, Yang Y-S (2010) A study of tiron in aqueous solutions for redox flow battery application. Electrochim Acta 55:715–720. doi: 10.1016/j.electacta.2009.09.031 CrossRefGoogle Scholar
  63. 63.
    Yang B, Hoober-Burkhardt L, Wang F, Prakash GKS, Narayanan SR (2014) An inexpensive aqueous flow battery for large-scale electrical energy storage based on water-soluble organic redox couples. J Electrochem Soc 161:A1371–A1380. doi: 10.1149/2.1001409jes CrossRefGoogle Scholar
  64. 64.
    Xu K (2004) Nonaqueous liquid electrolytes for lithium-based rechargeable batteries. Chem Rev 104:4303–4418. doi: 10.1021/cr030203g CrossRefGoogle Scholar
  65. 65.
    Cappillino PJ, Pratt HD, Hudak NS, Tomson NC, Anderson TM, Anstey MR (2014) Application of redox non-innocent ligands to non-aqueous flow battery electrolytes. Adv Energy Mater 4:n/a–n/a. doi: 10.1002/aenm.201300566
  66. 66.
    Sleightholme AES, Shinkle AA, Liu Q, Li Y, Monroe CW, Thompson LT (2011) Non-aqueous manganese acetylacetonate electrolyte for redox flow batteries. J Power Sources 196:5742–5745. doi: 10.1016/j.jpowsour.2011.02.020 CrossRefGoogle Scholar
  67. 67.
    Chakrabarti MH, Dryfe RAW, Roberts EPL (2007) Evaluation of electrolytes for redox flow battery applications. Electrochim Acta 52:2189–2195. doi: 10.1016/j.electacta.2006.08.052 CrossRefGoogle Scholar
  68. 68.
    Zhang D, Lan H, Li Y (2012) The application of a non-aqueous bis(acetylacetone)ethylenediamine cobalt electrolyte in redox flow battery. J Power Sources 217:199–203. doi: 10.1016/j.jpowsour.2012.06.038 CrossRefGoogle Scholar
  69. 69.
    Shinkle AA, Sleightholme AES, Griffith LD, Thompson LT, Monroe CW (2012) Degradation mechanisms in the non-aqueous vanadium acetylacetonate redox flow battery. J Power Sources 206:490–496. doi: 10.1016/j.jpowsour.2010.12.096 CrossRefGoogle Scholar
  70. 70.
    Mun J, Lee M-J, Park J-W, Oh D-J, Lee D-Y, Doo S-G (2012) Non-aqueous redox flow batteries with nickel and iron tris(2,2′-bipyridine) complex electrolyte. Electrochem Solid-State Lett 15:A80–A82. doi: 10.1149/2.033206esl CrossRefGoogle Scholar
  71. 71.
    Matsuda Y, Tanaka K, Okada M, Takasu Y, Morita M, Matsumura-Inoue T (1988) A rechargeable redox battery utilizing ruthenium complexes with non-aqueous organic electrolyte. J Appl Electrochem 18:909–914. doi: 10.1007/BF01016050 CrossRefGoogle Scholar
  72. 72.
    Chakrabarti MH, Roberts EPL, Bae C, Saleem M (2011) Ruthenium based redox flow battery for solar energy storage. Energy Convers Manage 52:2501–2508. doi: 10.1016/j.enconman.2011.01.012 CrossRefGoogle Scholar
  73. 73.
    Liu Q, Sleightholme AES, Shinkle AA, Li Y, Thompson LT (2009) Non-aqueous vanadium acetylacetonate electrolyte for redox flow batteries. Electrochem Commun 11:2312–2315. doi: 10.1016/j.elecom.2009.10.006 CrossRefGoogle Scholar
  74. 74.
    Liu Q, Shinkle AA, Li Y, Monroe CW, Thompson LT, Sleightholme AES (2010) Non-aqueous chromium acetylacetonate electrolyte for redox flow batteries. Electrochem Commun 12:1634–1637. doi: 10.1016/j.elecom.2010.09.013 CrossRefGoogle Scholar
  75. 75.
    Shinkle AA, Sleightholme AES, Thompson LT, Monroe CW (2011) Electrode kinetics in non-aqueous vanadium acetylacetonate redox flow batteries. J Appl Electrochem 41:1191–1199. doi: 10.1007/s10800-011-0314-z CrossRefGoogle Scholar
  76. 76.
    Shinkle AA, Pomaville TJ, Sleightholme AES, Thompson LT, Monroe CW (2014) Solvents and supporting electrolytes for vanadium acetylacetonate flow batteries. J Power Sources 248:1299–1305. doi: 10.1016/j.jpowsour.2013.10.034 CrossRefGoogle Scholar
  77. 77.
    Lee D-Y, Lee M-J, Park J-W, Oh D-J, Mun J-Y, Doo S-G (2011) Aromatic ligand coordinated redox couples & their application into redox flow batteries. The International Flow Battery Forum 2011 EdinburghGoogle Scholar
  78. 78.
    Gagne RR, Koval CA, Lisensky GC (1980) Ferrocene as an internal standard for electrochemical measurements. Inorg Chem 19:2854–2855. doi: 10.1021/ic50211a080 CrossRefGoogle Scholar
  79. 79.
    Wei X, Cosimbescu L, Xu W, Hu JZ, Vijayakumar M, Feng J, Hu MY, Deng X, Xiao J, Liu J, Sprenkle V, Wang W (2014) Towards high-performance nonaqueous redox flow electrolyte via ionic modification of active species. Adv Energy Mater n/a–n/a. doi: 10.1002/aenm.201400678
  80. 80.
    Liang Y, Tao Z, Chen J (2012) Organic electrode materials for rechargeable lithium batteries. Adv Energy Mater 2:742–769. doi: 10.1002/aenm.201100795 CrossRefGoogle Scholar
  81. 81.
    Song Z, Zhou H (2013) Towards sustainable and versatile energy storage devices: an overview of organic electrode materials. Energy Environ Sci 6:2280. doi: 10.1039/c3ee40709h CrossRefGoogle Scholar
  82. 82.
    Chen Z, Qin Y, Amine K (2009) Redox shuttles for safer lithium-ion batteries. Electrochim Acta 54:5605–5613. doi: 10.1016/j.electacta.2009.05.017 CrossRefGoogle Scholar
  83. 83.
    Brushett FR, Vaughey JT, Jansen AN (2012) An all-organic non-aqueous lithium-ion redox flow battery. Adv Energy Mater 2:1390–1396. doi: 10.1002/aenm.201200322 CrossRefGoogle Scholar
  84. 84.
    Zhang SS (2006) A review on electrolyte additives for lithium-ion batteries. J Power Sources 162:1379–1394. doi: 10.1016/j.jpowsour.2006.07.074 CrossRefGoogle Scholar
  85. 85.
    Zhang L, Zhang Z, Redfern PC, Curtiss LA, Amine K (2012) Molecular engineering towards safer lithium-ion batteries: a highly stable and compatible redox shuttle for overcharge protection. Energy Environ Sci 5:8204–8207. doi: 10.1039/C2EE21977H CrossRefGoogle Scholar
  86. 86.
    Su L, Ferrandon M, Kowalski JA, Vaughey JT, Brushett FR (2014) Electrolyte development for non-aqueous redox flow batteries using a high-throughput screening platform. J Electrochem Soc 161:A1905–A1914. doi: 10.1149/2.0811412jes CrossRefGoogle Scholar
  87. 87.
    Wang W, Xu W, Cosimbescu L, Choi D, Li L, Yang Z (2012) Anthraquinone with tailored structure for a nonaqueous metal–organic redox flow battery. Chem Commun 48:6669–6671. doi: 10.1039/C2CC32466K CrossRefGoogle Scholar
  88. 88.
    Bachman JE, Curtiss LA, Assary RS (2014) Investigation of the redox chemistry of anthraquinone derivatives using density functional theory. J Phys Chem A. doi: 10.1021/jp5060777 zbMATHGoogle Scholar
  89. 89.
    Hernández-Burgos K, Burkhardt SE, Rodríguez-Calero GG, Hennig RG, Abruña HD (2014) Theoretical studies of carbonyl-based organic molecules for energy storage applications: the heteroatom and substituent effect. J Phys Chem C 118:6046–6051. doi: 10.1021/jp4117613 CrossRefGoogle Scholar
  90. 90.
    Hernández-Burgos K, Rodríguez-Calero GG, Zhou W, Burkhardt SE, Abruña HD (2013) Increasing the gravimetric energy density of organic based secondary battery cathodes using small radius cations (Li+ and Mg2+). J Am Chem Soc 135:14532–14535. doi: 10.1021/ja407273c CrossRefGoogle Scholar
  91. 91.
    Nishide H, Koshika K, Oyaizu K (2009) Environmentally benign batteries based on organic radical polymers. Pure Appl Chem 81:1961–1970. doi: 10.1351/PAC-CON-08-12-03 CrossRefGoogle Scholar
  92. 92.
    Suga T, Nishide H (2011) Rechargeable batteries using robust but redox active organic radicals. In: Hicks R (ed) Stable radicals: fundamentals and applied aspects of odd-electron compounds, Chap. 14, 1st edn. Wiley, New YorkGoogle Scholar
  93. 93.
    Nakahara K, Iwasa S, Iriyama J, Morioka Y, Suguro M, Satoh M, Cairns EJ (2006) Electrochemical and spectroscopic measurements for stable nitroxyl radicals. Electrochim Acta 52:921–927. doi: 10.1016/j.electacta.2006.06.028 CrossRefGoogle Scholar
  94. 94.
    Buhrmester C, Moshurchak LM, Wang RL, Dahn JR (2006) The use of 2,2,6,6-tetramethylpiperinyl-oxides and derivatives for redox shuttle additives in Li-ion cells. J Electrochem Soc 153:A1800–A1804. doi: 10.1149/1.2221860 CrossRefGoogle Scholar
  95. 95.
    Li Z, Li S, Liu S, Huang K, Fang D, Wang F, Peng S (2011) Electrochemical properties of an all-organic redox flow battery using 2,2,6,6-tetramethyl-1-piperidinyloxy and N-methylphthalimide. Electrochem Solid-State Lett 14:A171–A173. doi: 10.1149/2.012112esl CrossRefGoogle Scholar
  96. 96.
    Wei X, Xu W, Vijayakumar M, Cosimbescu L, Liu T, Sprenkle V, Wang W (2014) TEMPO-based catholyte for high-energy density nonaqueous redox flow batteries. Adv Mater 26:7649–7653. doi: 10.1002/adma.201403746 CrossRefGoogle Scholar
  97. 97.
    Thaller L (1974) Electrically rechargeable redox flow cells. NASA-TM X-71540Google Scholar
  98. 98.
    Aaron DS, Liu Q, Tang Z, Grim GM, Papandrew AB, Turhan A, Zawodzinski TA, Mench MM (2012) Dramatic performance gains in vanadium redox flow batteries through modified cell architecture. J Power Sources 206:450–453. doi: 10.1016/j.jpowsour.2011.12.026 CrossRefGoogle Scholar
  99. 99.
    Darling RM, Perry ML (2014) The influence of electrode and channel configurations on flow battery performance. J Electrochem Soc 161:A1381–A1387. doi: 10.1149/2.0941409jes CrossRefGoogle Scholar
  100. 100.
    Duduta M, Ho B, Wood VC, Limthongkul P, Brunini VE, Carter WC, Chiang Y-M (2011) Semi-solid lithium rechargeable flow battery. Adv Energy Mater 1:511–516. doi: 10.1002/aenm.201100152 CrossRefGoogle Scholar
  101. 101.
    Li Z, Smith KC, Dong Y, Baram N, Fan FY, Xie J, Limthongkul P, Carter WC, Chiang Y-M (2013) Aqueous semi-solid flow cell: demonstration and analysis. Phys Chem Chem Phys 15:15833–15839. doi: 10.1039/C3CP53428F CrossRefGoogle Scholar
  102. 102.
    Fan FY, Woodford WH, Li Z, Baram N, Smith KC, Helal A, McKinley GH, Carter WC, Chiang Y-M (2014) Polysulfide flow batteries enabled by percolating nanoscale conductor networks. Nano Lett 14:2210–2218. doi: 10.1021/nl500740t CrossRefGoogle Scholar
  103. 103.
    Bradley CS (1885) Secondary battery. US Patent 312,802, 24 Feb 1885Google Scholar
  104. 104.
    Barnartt S, Forejt DA (1964) Bromine-zinc secondary cells. J Electrochem Soc 111:1201–1204. doi: 10.1149/1.2425960 CrossRefGoogle Scholar
  105. 105.
    Lim HS, Lackner AM, Knechtli RC (1977) Zinc-bromine secondary battery. J Electrochem Soc 124:1154–1157. doi: 10.1149/1.2133517 CrossRefGoogle Scholar
  106. 106.
    Pavlov D, Papazov G, Gerganska M (1991) Battery energy storage systems. The United Nations Educational, Scientific and Cultural Organization, Regional Office for Science and Technology for Europe, Technical Report No. 7Google Scholar
  107. 107.
  108. 108.
    Adams GB (1979) Electrically rechargeable battery. US Patent 4,180,623, 25 Dec 1979Google Scholar
  109. 109.
    Magnani NJ, Clark RP, Braithwaite JW, Bush DM, Butler PC, Freese JM, Grothaus KR, Murphy KD, Shoemaker PE(1985) Exploratory battery technology development and testing report for 1985. Sandia National LaboratoriesGoogle Scholar
  110. 110.
    Clarke R, Dougherty B, Harrison S, Millington P, Mohanta S (2004) Cerium batteries. US Patent Application Publication 2004/0202925 A1, 14 Oct 2004Google Scholar
  111. 111.
    Clarke R, Dougherty B, Harrison S, Millington J, Mohanta S (2006) Battery with bifunctional electrolyte. US Patent Application Publication 2006/0063065 A1, 23 Mar 2006Google Scholar
  112. 112.
    Hazza A, Pletcher D, Wills R (2004) A novel flow battery: a lead acid battery based on an electrolyte with soluble lead(II) Part I. Preliminary studies. Phys Chem Chem Phys 6:1773. doi: 10.1039/b401115e CrossRefGoogle Scholar
  113. 113.
    Pletcher D, Wills R (2004) A novel flow battery: a lead acid battery based on an electrolyte with soluble lead(II) Part II. Flow cell studies. Phys Chem Chem Phys 6:1779–1785CrossRefGoogle Scholar
  114. 114.
    Pletcher D, Wills R (2005) A novel flow battery: a lead acid battery based on an electrolyte with soluble lead(II) Part III. The influence of conditions on battery performance. J Power Sources 149:96–102. doi: 10.1016/j.jpowsour.2005.01.048 CrossRefGoogle Scholar
  115. 115.
    Hazza A, Pletcher D, Wills R (2005) A novel flow battery: a lead acid battery based on an electrolyte with soluble lead(II) Part IV. The influence of additives. J Power Sources 149:103–111. doi: 10.1016/j.jpowsour.2005.01.049 CrossRefGoogle Scholar
  116. 116.
    Pletcher D, Zhou H, Kear G, Low CTJ, Walsh FC, Wills RGA (2008) A novel flow battery: a lead-acid battery based on an electrolyte with soluble lead(II) Part V. Studies of the lead negative electrode. J Power Sources 180:621–629. doi: 10.1016/j.jpowsour.2008.02.024 CrossRefGoogle Scholar
  117. 117.
    Pletcher D, Zhou H, Kear G, Low CTJ, Walsh FC, Wills RGA (2008) A novel flow battery: a lead-acid battery based on an electrolyte with soluble lead(II) Part VI. Studies of the lead dioxide positive electrode. J Power Sources 180:630–634. doi: 10.1016/j.jpowsour.2008.02.025 CrossRefGoogle Scholar
  118. 118.
    Li X, Pletcher D, Walsh FC (2009) A novel flow battery: a lead acid battery based on an electrolyte with soluble lead(II) Part VII. Further studies of the lead dioxide positive electrode. Electrochim Acta 54:4688–4695. doi: 10.1016/j.electacta.2009.03.075 CrossRefGoogle Scholar
  119. 119.
    Collins J, Kear G, Li X, Low CTJ, Pletcher D, Tangirala R, Stratton-Campbell D, Walsh FC, Zhang C (2010) A novel flow battery: a lead acid battery based on an electrolyte with soluble lead(II) Part VIII. The cycling of a 10 cm × 10 cm flow cell. J Power Sources 195:1731–1738. doi: 10.1016/j.jpowsour.2009.09.044 CrossRefGoogle Scholar
  120. 120.
    Collins J, Li X, Pletcher D, Tangirala R, Stratton-Campbell D, Walsh FC, Zhang C (2010) A novel flow battery: a lead acid battery based on an electrolyte with soluble lead(II) Part IX: Electrode and electrolyte conditioning with hydrogen peroxide. J Power Sources 195:2975–2978. doi: 10.1016/j.jpowsour.2009.10.109 CrossRefGoogle Scholar
  121. 121.
    Verde MG, Carroll KJ, Wang Z, Sathrum A, Meng YS (2013) Achieving high efficiency and cyclability in inexpensive soluble lead flow batteries. Energy Environ Sci 6:1573. doi: 10.1039/c3ee40631h CrossRefGoogle Scholar
  122. 122.
    Xu W, Wang J, Ding F, Chen X, Nasybulin E, Zhang Y, Zhang J-G (2014) Lithium metal anodes for rechargeable batteries. Energy Environ Sci 7:513–537. doi: 10.1039/C3EE40795K CrossRefGoogle Scholar
  123. 123.
    Tarascon J-M, Armand M (2001) Issues and challenges facing rechargeable lithium batteries. Nature 414:359–367. doi: 10.1038/35104644 CrossRefGoogle Scholar
  124. 124.
    Christensen J, Albertus P, Sanchez-Carrera RS, Lohmann T, Kozinsky B, Liedtke R, Ahmed J, Kojic A (2011) A critical review of Li/air batteries. J Electrochem Soc 159:R1–R30. doi: 10.1149/2.086202jes CrossRefGoogle Scholar
  125. 125.
    Lu Y, Goodenough JB, Kim Y (2011) Aqueous cathode for next-generation alkali-ion batteries. J Am Chem Soc 133:5756–5759. doi: 10.1021/ja201118f CrossRefGoogle Scholar
  126. 126.
    Lu Y, Goodenough JB (2011) Rechargeable alkali-ion cathode-flow battery. J Mater Chem 21:10113–10117. doi: 10.1039/C0JM04222F CrossRefGoogle Scholar
  127. 127.
    Wang Y, He P, Zhou H (2012) Li-redox flow batteries based on hybrid electrolytes: at the cross road between Li-ion and redox flow batteries. Adv Energy Mater 2:770–779. doi: 10.1002/aenm.201200100 CrossRefGoogle Scholar
  128. 128.
    Zhao Y, Byon HR (2013) High-performance lithium-iodine flow battery. Adv Energy Mater 3:1630–1635. doi: 10.1002/aenm.201300627 CrossRefGoogle Scholar
  129. 129.
    Bruce PG, Freunberger SA, Hardwick LJ, Tarascon J-M (2012) Li–O2 and Li–S batteries with high energy storage. Nat Mater 11:19–29. doi: 10.1038/nmat3191 CrossRefGoogle Scholar
  130. 130.
    Su Y-S, Fu Y, Cochell T, Manthiram A (2013) A strategic approach to recharging lithium-sulphur batteries for long cycle life. Nat Commun. doi: 10.1038/ncomms3985
  131. 131.
    Manthiram A, Fu Y, Chung S-H, Zu C, Su Y-S (2014) Rechargeable lithium–sulfur batteries. Chem Rev doi: 10.1021/cr500062v
  132. 132.
    Rauh RD, Abraham KM, Pearson GF, Surprenant JK, Brummer SB (1979) A lithium/dissolved sulfur battery with an organic electrolyte. J Electrochem Soc 126:523–527. doi: 10.1149/1.2129079 CrossRefGoogle Scholar
  133. 133.
    Manthiram A, Fu Y, Su Y-S (2013) Challenges and prospects of lithium–sulfur batteries. Acc Chem Res 46:1125–1134. doi: 10.1021/ar300179v CrossRefGoogle Scholar
  134. 134.
    Mikhaylik YV (2008) Electrolytes for lithium sulfur cells. US Patent 7,354,680 B2, 8 April 2008Google Scholar
  135. 135.
    Aurbach D, Pollak E, Elazari R, Salitra G, Kelley CS, Affinito J (2009) On the surface chemical aspects of very high energy density, rechargeable Li–sulfur batteries. J Electrochem Soc 156:A694–A702. doi: 10.1149/1.3148721 CrossRefGoogle Scholar
  136. 136.
    Yang Y, Zheng G, Cui Y (2013) A membrane-free lithium/polysulfide semi-liquid battery for large-scale energy storage. Energy Environ Sci 6:1552–1558. doi: 10.1039/C3EE00072A CrossRefGoogle Scholar
  137. 137.
    Darling RM, Gallagher KG, Kowalski JA, Ha S, Brushett FR (2014) Pathways to low-cost electrochemical energy storage: a comparison of aqueous and nonaqueous flow batteries. Energy Environ Sci doi: 10.1039/C4EE02158D

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Liang Su
    • 1
  • Jeffrey A. Kowalski
    • 1
  • Kyler J. Carroll
    • 1
  • Fikile R. Brushett
    • 1
    Email author
  1. 1.Department of Chemical EngineeringMassachusetts Institute of TechnologyCambridgeUSA

Personalised recommendations