Rechargeable Batteries pp 511-539

Part of the Green Energy and Technology book series (GREEN)

Non-aqueous Metal–Oxygen Batteries: Past, Present, and Future

Chapter

Abstract

Metal–oxygen batteries have attracted significant attention due to the high theoretical capacities of some chemistries. This chapter summarizes the history of metal-oxygen batteries and reviews the current status of room-temperature, non-aqueous systems. Emphasis is given to the operating mechanisms, unsolved challenges, and new approaches associated with the Li–O2 system.

References

  1. 1.
    Vergnes M (1860) Improvement in the construction of voltaic gas-batteries. US Patent 28317Google Scholar
  2. 2.
    Shao Y, Ding F, Xiao J et al (2013) Making Li-air batteries rechargeable: material challenges. Adv Funct Mater 23:987–1004. doi:10.1002/adfm.201200688 Google Scholar
  3. 3.
    Heise GW, Schumacher EA (1932) An air-depolarized primary cell with caustic alkali electrolyte. J Electrochem Soc 62:383–391. doi:10.1149/1.3493794 Google Scholar
  4. 4.
    Reddy TB, Linden D (2011) Handbook of batteries. McGraw-Hill Companies, New YorkGoogle Scholar
  5. 5.
    Moehlenbrock MJ, Minteer SD (2008) Extended lifetime biofuel cells. Chem Soc Rev 37:1188–1196. doi:10.1039/b708013c Google Scholar
  6. 6.
    Srinivasan S (2006) Fuel cells: from fundamentals to applications. Springer, New YorkGoogle Scholar
  7. 7.
    Yu X, Pickup PG (2008) Recent advances in direct formic acid fuel cells (DFAFC). J Power Sources 182:124–132. doi:10.1016/j.jpowsour.2008.03.075 Google Scholar
  8. 8.
    Ma J, Choudhury NA, Sahai Y (2010) A comprehensive review of direct borohydride fuel cells. Renew Sustain Energy Rev 14:183–199. doi:10.1016/j.rser.2009.08.002 Google Scholar
  9. 9.
    Abraham KM, Jiang Z (1996) A polymer electrolyte-based rechargeable lithium/oxygen battery. J Electrochem Soc 143:1–5. doi:10.1149/1.1836378 Google Scholar
  10. 10.
    Toni JEA, McDonald GD, Elliott WE (1966) Lithium-moist air battery. Fort Belvoir, VirginiaGoogle Scholar
  11. 11.
    Blurton KF, Sammells AF (1979) Metal/air review batteries: their status and potential—a review. J Power Sources 4:263–279. doi:10.1016/0378-7753(79)80001-4 Google Scholar
  12. 12.
    Semkow KW, Sammells AF (1987) A lithium oxygen secondary battery. J Electrochem Soc 134:2084–2085. doi:10.1149/1.2100826 Google Scholar
  13. 13.
    Abraham KM (2008) A brief history of non-aqueous metal-air batteries. ECS Trans 3:67–71. doi:10.1149/1.2838193 Google Scholar
  14. 14.
    Zhang T, Zhou H (2013) A reversible long-life lithium-air battery in ambient air. Nat Commun 4:1817. doi:10.1038/ncomms2855 Google Scholar
  15. 15.
    Imanishi N, Luntz AC, Bruce P (2014) The lithium air battery: fundamentals. Springer, BerlinGoogle Scholar
  16. 16.
    Lu J, Li L, Park J-B et al (2014) Aprotic and aqueous Li–O2 batteries. Chem Rev 114:5611–5640. doi:10.1021/cr400573b Google Scholar
  17. 17.
    Wang J, Li Y, Sun X (2013) Challenges and opportunities of nanostructured materials for aprotic rechargeable lithium–oxygen batteries. Nano Energy 2:443–467. doi:10.1016/j.nanoen.2012.11.014 Google Scholar
  18. 18.
    Li Q, Cao R, Cho J, Wu G (2014) Nanostructured carbon-based cathode catalysts for nonaqueous lithium–oxygen batteries. Phys Chem Chem Phys. doi:10.1039/C4CP00225C
  19. 19.
    Balaish M, Kraytsberg A, Ein-Eli Y (2014) A critical review on lithium-air battery electrolytes. Phys Chem Chem Phys 16:2801–2822. doi:10.1039/c3cp54165g Google Scholar
  20. 20.
    Yuan J, Yu J-S, Sundén B (2015) Review on mechanisms and continuum models of multi-phase transport phenomena in porous structures of non-aqueous Li-Air batteries. J Power Sources 278:352–369. doi:10.1016/j.jpowsour.2014.12.078 Google Scholar
  21. 21.
    Guo Z, Dong X, Yuan S et al (2014) Humidity effect on electrochemical performance of Li–O2 batteries. J Power Sources 264:1–7. doi:10.1016/j.jpowsour.2014.04.079 Google Scholar
  22. 22.
    Trahan MJ, Mukerjee S, Plichta EJ et al (2012) Studies of Li-air cells utilizing dimethyl sulfoxide-based electrolyte. J Electrochem Soc 160:A259–A267. doi:10.1149/2.048302jes Google Scholar
  23. 23.
    Adams BD, Radtke C, Black R et al (2013) Current density dependence of peroxide formation in the Li–O2 battery and its effect on charge. Energy Environ Sci 6:1772. doi:10.1039/c3ee40697k Google Scholar
  24. 24.
    Geaney H, O’Connell J, Holmes JD, O’Dwyer C (2014) On the use of gas diffusion layers as current collectors in Li–O2 battery cathodes. J Electrochem Soc 161:A1964–A1968. doi:10.1149/2.0021414jes Google Scholar
  25. 25.
    Hougton R, Gouty D, Allinson J et al (2012) Monitoring the location of cathode-reactions in Li–O2 batteries. J Electrochem Soc 162:A3126–A3132. doi:10.1149/2.0191502jes Google Scholar
  26. 26.
    Gallagher KG, Goebel S, Greszler T et al (2014) Quantifying the promise of lithium–air batteries for electric vehicles. Energy Environ Sci. doi:10.1039/c3ee43870h Google Scholar
  27. 27.
    Adams J, Karulkar M (2012) Bipolar plate cell design for a lithium air battery. J Power Sources 199:247–255. doi:10.1016/j.jpowsour.2011.10.041 Google Scholar
  28. 28.
    Jung H-G, Hassoun J, Park J-B et al (2012) An improved high-performance lithium-air battery. Nat Chem 4:579–585. doi:10.1038/nchem.1376 Google Scholar
  29. 29.
    Mitchell RR, Gallant BM, Thompson CV, Shao-Horn Y (2011) All-carbon-nanofiber electrodes for high-energy rechargeable Li–O2 batteries. Energy Environ Sci 4:2952–2958. doi:10.1039/c1ee01496j Google Scholar
  30. 30.
    Sun B, Huang X, Chen S et al (2014) Porous graphene nanoarchitectures: an efficient catalyst for low charge-overpotential, long life, and high capacity lithium–oxygen batteries. Nano Lett 14:3145–3152. doi:10.1021/nl500397y Google Scholar
  31. 31.
    Kwabi DG, Ortiz-Vitoriano N, Freunberger Sa et al (2014) Materials challenges in rechargeable lithium–air batteries. MRS Bull 39:443–452. doi:10.1557/mrs.2014.87 Google Scholar
  32. 32.
    Lu J, Lei Y, Lau KC et al (2013) A nanostructured cathode architecture for low charge overpotential in lithium–oxygen batteries. Nat Commun 4:2383. doi:10.1038/ncomms3383 Google Scholar
  33. 33.
    Yilmaz E, Yogi C, Yamanaka K et al (2013) Promoting formation of noncrystalline Li2O2 in Li–O2 battery with RuO2 nanoparticles. Nano Lett 13:4679–4684. doi:10.1021/nl4020952 Google Scholar
  34. 34.
    Meini S, Piana M, Tsiouvaras N et al (2012) The effect of water on the discharge capacity of a non-catalyzed carbon cathode for Li–O2 batteries. Electrochem Solid-State Lett 15:A45–A48. doi:10.1149/2.005204esl Google Scholar
  35. 35.
    Meini S, Solchenbach S, Piana M, Gasteiger Ha (2014) The role of electrolyte solvent stability and electrolyte impurities in the electrooxidation of Li2O2 in Li–O2 batteries. J Electrochem Soc 161:A1306–A1314. doi:10.1149/2.0621409jes Google Scholar
  36. 36.
    Aetukuri NB, McCloskey BD, García JM et al (2014) Solvating additives drive solution-mediated electrochemistry and enhance toroid growth in non-aqueous Li–O2 batteries. Nat Chem 7:50–56. doi: 10.1038/nchem.2132
  37. 37.
    Mitchell RR, Gallant BM, Shao-Horn Y, Thompson CV (2013) Mechanisms of morphological evolution of Li2O2 particles during electrochemical growth. J Phys Chem Lett 4:1060–1064. doi:10.1021/jz4003586 Google Scholar
  38. 38.
    Viswanathan V, Thygesen KS, Hummelshøj JS et al (2011) Electrical conductivity in Li2O2 and its role in determining capacity limitations in non-aqueous Li–O2 batteries. J Chem Phys 135:214704. doi:10.1063/1.3663385 Google Scholar
  39. 39.
    Griffith LD, Sleightholme AES, Mansfield JF et al (2015) Correlating Li/O2 Cell Capacity and Product Morphology with Discharge Current. ACS Appl Mater Interfaces 7:7670–7678. doi:10.1021/acsami.5b00574
  40. 40.
    Jung H-G, Kim H-S, Park J-B et al (2012) A transmission electron microscopy study of the electrochemical process of lithium–oxygen cells. Nano Lett 1:2–4. doi:10.1021/nl302066d Google Scholar
  41. 41.
    Zhai D, Wang H-H, Yang J et al (2013) Disproportionation in Li–O2 batteries based on a large surface area carbon cathode. J Am Chem Soc 135:15364–15372. doi:10.1021/ja403199d Google Scholar
  42. 42.
    Xia C, Waletzko M, Peppler K, Janek J (2013) Silica nanoparticles as structural promoters for oxygen cathodes of lithium–oxygen batteries. J Phys Chem C 117:19897–19904. doi:10.1021/jp407011d Google Scholar
  43. 43.
    Xu J-J, Wang Z-L, Xu D et al (2013) Tailoring deposition and morphology of discharge products towards high-rate and long-life lithium–oxygen batteries. Nat Commun 4:2438. doi:10.1038/ncomms3438 Google Scholar
  44. 44.
    Lu J, Cheng L, Lau KC et al (2014) Effect of the size-selective silver clusters on lithium peroxide morphology in lithium–oxygen batteries. Nat Commun 5:4895. doi:10.1038/ncomms5895 Google Scholar
  45. 45.
    Xia C, Waletzko M, Chen L et al (2014) Evolution of Li2O2 growth and its effect on kinetics of Li–O2 batteries. ACS Appl Mater Interfaces 6:12083–12092. doi:10.1021/am5010943 Google Scholar
  46. 46.
    Schwenke KU, Metzger M, Restle T et al (2015) The influence of water and protons on Li2O2 crystal growth in aprotic Li–O2 cells. J Electrochem Soc 162:A573–A584. doi:10.1149/2.0201504jes Google Scholar
  47. 47.
    Aetukuri NB, McCloskey BD, García JM et al (2014) Solvating additives drive solution-mediated electrochemistry and enhance toroid growth in non-aqueous Li–O2 batteries. Nat Chem. doi:10.1038/nchem.2132 Google Scholar
  48. 48.
    Kosma Va, Beltsios KG (2013) Simple solution routes for targeted carbonate phases and intricate carbonate and silicate morphologies. Mater Sci Eng, C 33:289–297. doi:10.1016/j.msec.2012.08.042 Google Scholar
  49. 49.
    Felker FC, Kenar JA, Fanta GF, Biswas A (2013) Comparison of microwave processing and excess steam jet cooking for spherulite production from amylose–fatty acid inclusion complexes. Starch 65:864–874. doi:10.1002/star.201200218 Google Scholar
  50. 50.
    Horstmann B, Gallant B, Mitchell R et al (2013) Rate-dependent morphology of Li2O2 growth in Li–O2 batteries. J Phys Chem Lett 4:4217–4222Google Scholar
  51. 51.
    Morse JW, Casey WH (1988) Ostwald processes and mineral paragenesis in sediments. Am J Sci 288:537–560Google Scholar
  52. 52.
    Feenstra TP, De Bruyn PL (1981) The Ostwald rule of stages in precipitation from highly supersaturated solutions: a model and its application to the formation of the nonstoichiometric amorphous calcium phosphate precursor phase. J Colloid Interface Sci 84:66–72Google Scholar
  53. 53.
    Ostwald W (1897) Studien über die Umwandlung fester Körper. Z Phys Chem 22:289–330Google Scholar
  54. 54.
    Tian F, Radin MD, Siegel DJ (2014) Enhanced charge transport in amorphous Li2O2. Chem Mater 26:2952–2959. doi:10.1021/cm5007372 Google Scholar
  55. 55.
    Lau KC, Lu J, Luo X et al (2014) Implications of the unpaired spins in Li–O2 battery chemistry and electrochemistry: a minireview. Chempluschem 80:336–343. doi:10.1002/cplu.201402053 Google Scholar
  56. 56.
    Vannerberg N-G (1962) Peroxides, superoxides, and ozonides of the metals of groups Ia, IIa, and IIb. Prog Inorg Chem. Wiley, Hoboken, pp 125–197Google Scholar
  57. 57.
    Lu J, Jung H-J, Lau KC et al (2013) Magnetism in lithium–oxygen discharge product. ChemSusChem 6:1196–1202. doi:10.1002/cssc.201300223 Google Scholar
  58. 58.
    Radin MD, Rodriguez JF, Tian F, Siegel DJ (2012) Lithium peroxide surfaces are metallic, while lithium oxide surfaces are not. J Am Chem Soc 134:1093–1103. doi:10.1021/ja208944x Google Scholar
  59. 59.
    Ong SP, Mo Y, Ceder G (2012) Low hole polaron migration barrier in lithium peroxide. Phys Rev B 85:081105. doi:10.1103/PhysRevB.85.081105 Google Scholar
  60. 60.
    Radin MD, Siegel DJ (2013) Charge transport in lithium peroxide: relevance for rechargeable metal-air batteries. Energy Environ Sci 6:2370–2379. doi:10.1039/c3ee41632a Google Scholar
  61. 61.
    Trahan MJ, Jia Q, Mukerjee S et al (2013) Cobalt phthalocyanine catalyzed lithium–air batteries. J Electrochem Soc 160:A1577–A1586. doi:10.1149/2.118309jes Google Scholar
  62. 62.
    Thapa AK, Hidaka Y, Hagiwara H et al (2011) Mesoporous β-MnO2 air electrode modified with Pd for rechargeability in lithium–air battery. J Electrochem Soc 158:A1483. doi:10.1149/2.090112jes Google Scholar
  63. 63.
    Xu W, Xu K, Viswanathan VV et al (2011) Reaction mechanisms for the limited reversibility of Li–O2 chemistry in organic carbonate electrolytes. J Power Sources 196:9631–9639. doi:10.1016/j.jpowsour.2011.06.099 Google Scholar
  64. 64.
    Meini S, Tsiouvaras N, Schwenke KU et al (2013) Rechargeability of Li–air cathodes pre-filled with discharge products using an ether-based electrolyte solution: implications for cycle-life of Li–air cells. Phys Chem Chem Phys 15:11478–11493. doi:10.1039/c3cp51112j Google Scholar
  65. 65.
    Mccloskey BD, Valery A, Luntz AC et al (2013) Combining accurate O2 and Li2O2 assays to separate discharge and charge stability limitations in nonaqueous Li–O2 batteries. J Phys Chem Lett 4:2989–2993. doi:10.1021/jz401659f Google Scholar
  66. 66.
    Freunberger S, Chen Y, Drewett NE et al (2011) The lithium-oxygen battery with ether-based electrolytes. Angew Chem Int Ed Engl 50:8609–8613. doi:10.1002/anie.201102357 Google Scholar
  67. 67.
    Luntz AC, Viswanathan V, Voss J et al (2013) Tunneling and polaron charge transport through Li2O2 in Li–O2 batteries. J Phys Chem Lett 4:3494–34997. doi:10.1021/jz401926f Google Scholar
  68. 68.
    Garcia-Lastra JM, Myrdal JSG, Christensen R et al (2013) DFT+U study of polaronic conduction in Li2O2 and Li2CO3: implications for Li–Air batteries. J Phys Chem C 117:5568–5577. doi:10.1021/jp3107809 Google Scholar
  69. 69.
    Lu Y-C, Gallant BM, Kwabi DG et al (2013) Lithium–oxygen batteries: bridging mechanistic understanding and battery performance. Energy Environ Sci 6:750. doi:10.1039/c3ee23966g Google Scholar
  70. 70.
    Safari M, Adams BD, Nazar LF (2014) Kinetics of oxygen reduction in aprotic Li–O2 cells: a model-based study. J Phys Chem Lett 5:3486–3491. doi:10.1021/jz5018202 Google Scholar
  71. 71.
    Xue K, Mcturk E, Johnson L et al (2015) A comprehensive model for non-aqueous lithium air batteries involving different reaction mechanisms 162:614–621. doi:10.1149/2.0121504jes
  72. 72.
    Kang S, Mo Y, Ong SP, Ceder G (2013) A facile mechanism for recharging Li2O2 in Li–O2 batteries. Chem Mater 25:3328–3336. doi:10.1021/cm401720n Google Scholar
  73. 73.
    Gallant BM, Kwabi DG, Mitchell RR et al (2013) Influence of Li2O2 morphology on oxygen reduction and evolution kinetics in Li–O2 batteries. Energy Environ Sci 6:2518. doi:10.1039/c3ee40998h Google Scholar
  74. 74.
    Radin MD, Monroe CW, Siegel DJ (2015) How dopants can enhance charge transport in Li2O2. Chem Mater 27:839–847. doi:10.1021/cm503874c Google Scholar
  75. 75.
    Malik R, Abdellahi A, Ceder G (2013) A critical review of the Li insertion mechanisms in LiFePO4 electrodes. J Electrochem Soc 160:A3179–A3197. doi:10.1149/2.029305jes Google Scholar
  76. 76.
    Albertus P, Girishkumar G, McCloskey B et al (2011) Identifying capacity limitations in the Li/Oxygen battery using experiments and modeling. J Electrochem Soc 158:A343. doi:10.1149/1.3527055 Google Scholar
  77. 77.
    Das SK, Xu S, Emwas A-H et al (2012) High energy lithium-oxygen batteries—transport barriers and thermodynamics. Energy Environ Sci 5:8927. doi:10.1039/c2ee22470d Google Scholar
  78. 78.
    Lu Y-C, Shao-Horn Y (2013) Probing the reaction kinetics of the charge reactions of nonaqueous Li–O2 batteries. J Phys Chem Lett 4:93–99. doi:10.1021/jz3018368 Google Scholar
  79. 79.
    Viswanathan V, Nørskov JK, Speidel A et al (2013) Li–O2 kinetic overpotentials: Tafel plots from experiment and first-principles theory. J Phys Chem Lett 4:556–560. doi:10.1021/jz400019y Google Scholar
  80. 80.
    Gerbig O, Merkle R, Maier J (2013) Electron and ion transport in Li2O2. Adv Mater 25:3129–3133. doi:10.1002/adma.201300264 Google Scholar
  81. 81.
    Radin MD (2014) First-principles and continuum modeling of charge transport in Li–O2 batteries. University of Michigan, Ann ArborGoogle Scholar
  82. 82.
    Radin MD, Tian F, Siegel DJ (2012) Electronic structure of Li2O2 0001 surfaces. J Mater Sci 47:7564–7570. doi:10.1007/s10853-012-6552-6 Google Scholar
  83. 83.
    Geng WT, He BL, Ohno T (2013) Grain boundary induced conductivity in Li2O2. J Phys Chem C 117:25222–25228. doi:10.1021/jp405315k Google Scholar
  84. 84.
    Zhao Y, Ban C, Kang J et al (2012) P-type doping of lithium peroxide with carbon sheets. Appl Phys Lett 101:023903. doi:10.1063/1.4733480 Google Scholar
  85. 85.
    Zhu D, Zhang L, Song M et al (2013) Intermittent operation of the aprotic Li–O2 battery: the mass recovery process upon discharge interval. J Solid State Electrochem 17:2539–2544. doi:10.1007/s10008-013-2116-1 Google Scholar
  86. 86.
    Sahapatsombut U, Cheng H, Scott K (2013) Modelling the micro–macro homogeneous cycling behaviour of a lithium–air battery. J Power Sources 227:243–253. doi:10.1016/j.jpowsour.2012.11.053 Google Scholar
  87. 87.
    Nimon VY, Visco SJ, De Jonghe LC et al (2013) Modeling and experimental study of porous carbon cathodes in Li–O2 cells with non-aqueous electrolyte. ECS Electrochem Lett 2:A33–A35. doi:10.1149/2.004304eel Google Scholar
  88. 88.
    Liu J, Monroe CW (In preparation)Google Scholar
  89. 89.
    Chen XJ, Bevara VV, Andrei P et al (2014) Combined effects of oxygen diffusion and electronic resistance in Li–Air batteries with carbon nanofiber cathodes. J Electrochem Soc 161:A1877–A1883. doi:10.1149/2.0721412jes Google Scholar
  90. 90.
    Hummelshøj JS, Luntz AC, Nørskov JK (2013) Theoretical evidence for low kinetic overpotentials in Li–O2 electrochemistry. J Chem Phys 138:034703. doi:10.1063/1.4773242 Google Scholar
  91. 91.
    Mo Y, Ong S, Ceder G (2011) First-principles study of the oxygen evolution reaction of lithium peroxide in the lithium–air battery. Phys Rev B 84:205446. doi:10.1103/PhysRevB.84.205446 Google Scholar
  92. 92.
    Lee B, Seo D-H, Lim H-D et al (2014) First-principles study of the reaction mechanism in sodium–oxygen batteries. Chem Mater 26:1048–1055. doi:10.1021/cm403163c Google Scholar
  93. 93.
    Leung K (2013) Electronic structure modeling of electrochemical reactions at electrode/electrolyte interfaces in lithium ion batteries. J Phys Chem C 117:1539–1547. doi:10.1021/jp308929a Google Scholar
  94. 94.
    Mizuno F, Nakanishi S, Kotani Y et al (2010) Rechargeable Li–Air batteries with carbonate-based liquid electrolytes. Electrochemistry 78:403–405Google Scholar
  95. 95.
    McCloskey B, Bethune D, Shelby R et al (2011) Solvents’ critical role in nonaqueous lithium–oxygen battery. J Phys Chem Lett 2:1161–1166Google Scholar
  96. 96.
    Laino T, Curioni A (2012) A new piece in the puzzle of lithium/air batteries: computational study on the chemical stability of propylene carbonate in the presence of lithium peroxide. Chem—Eur J 18:3510–3520. doi:10.1002/chem.201103057 Google Scholar
  97. 97.
    McCloskey BD, Bethune DS, Shelby RM et al (2012) Limitations in rechargeability of Li–O2 batteries and possible origins. J Phys Chem Lett 3:3043–3047Google Scholar
  98. 98.
    Veith GM, Nanda J, Delmau LH, Dudney NJ (2012) Influence of lithium salts on the discharge chemistry of Li–Air cells. J Phys Chem Lett 3:1242–1247. doi:10.1021/jz300430s Google Scholar
  99. 99.
    Du P, Lu J, Lau KC et al (2013) Compatibility of lithium salts with solvent of the non-aqueous electrolyte in Li–O2 batteries. Phys Chem Chem Phys 15:5572–5581. doi:10.1039/c3cp50500f Google Scholar
  100. 100.
    Younesi R, Hahlin M, Bjo F et al (2013) Li–O2 battery degradation by lithium peroxide (Li2O2): a model study. Chem Mater 25:77–84. doi:10.1021/cm303226g Google Scholar
  101. 101.
    Mccloskey BD, Speidel A, Scheffler R et al (2012) Twin problems of interfacial carbonate formation in nonaqueous Li–O2 batteries. J Phys Chem Lett 3:997–1001. doi:10.1021/jz300243r Google Scholar
  102. 102.
    Ottakam Thotiyl MM, Freunberger SA, Peng Z, Bruce PG (2013) The carbon electrode in nonaqueous Li–O2 cells. J Am Chem Soc 135:494–500. doi:10.1021/ja310258x Google Scholar
  103. 103.
    Nasybulin E, Xu W, Engelhard MH et al (2013) Stability of polymer binders in Li–O2 batteries. J Power Sources 243:899–907. doi:10.1016/j.jpowsour.2013.06.097 Google Scholar
  104. 104.
    Shui J-L, Wang H-H, Liu D-J (2013) Degradation and revival of Li–O2 battery cathode. Electrochem Commun 34:45–47. doi:10.1016/j.elecom.2013.05.020 Google Scholar
  105. 105.
    Peng Z, Freunberger SA, Chen Y, Bruce PG (2012) A reversible and higher-rate Li–O2 battery. Science 80(337):563–566. doi:10.1126/science.1223985 Google Scholar
  106. 106.
    Kar M, Simons TJ, Forsyth M, MacFarlane DR (2014) Ionic liquid electrolytes as a platform for rechargeable metal–air batteries: a perspective. Phys Chem Chem Phys 16:18658–18674. doi:10.1039/C4CP02533D Google Scholar
  107. 107.
    Lau KC, Lu J, Low J et al (2014) Investigation of the decomposition mechanism of lithium bis(oxalate)borate (LiBOB) salt in the electrolyte of an aprotic Li–O2 battery. Energy Technol 2:348–354. doi:10.1002/ente.201300164 Google Scholar
  108. 108.
    Bryantsev V (2011) Computational study of the mechanisms of superoxide-induced decomposition of organic carbonate-based electrolytes. J Phys Chem Lett 2:379–383Google Scholar
  109. 109.
    Beyer H, Meini S, Tsiouvaras N et al (2013) Thermal and electrochemical decomposition of lithium peroxide in non-catalyzed carbon cathodes for Li–air batteries. Phys Chem Chem Phys 15:11025–11037. doi:10.1039/c3cp51056e Google Scholar
  110. 110.
    Bryantsev VS, Faglioni F (2012) Predicting autoxidation stability of ether- and amide-based electrolyte solvents for Li-air batteries. J Phys Chem A 116:7128–7138. doi:10.1021/jp301537w Google Scholar
  111. 111.
    Zhu D, Zhang L, Song M et al (2013) Solvent autoxidation, electrolyte decomposition, and performance deterioration of the aprotic Li–O2 battery. J Solid State Electrochem 17:2865–2870. doi:10.1007/s10008-013-2202-4 Google Scholar
  112. 112.
    Assary RS, Lau KC, Amine K et al (2013) Interactions of dimethoxy ethane with Li2O2 clusters and likely decomposition mechanisms for Li–O2 batteries. J Phys Chem C 117:8041–8049Google Scholar
  113. 113.
    Laino T, Curioni A (2013) Chemical reactivity of aprotic electrolytes on a solid Li2O2 surface: screening solvents for Li–air batteries. New J Phys 15:095009. doi:10.1088/1367-2630/15/9/095009 Google Scholar
  114. 114.
    McCloskey B, Scheffler R, Speidel A et al (2011) On the efficacy of electrocatalysis in nonaqueous Li–O2 batteries. J Am Chem Soc 133:18038–18041Google Scholar
  115. 115.
    Harding JR, Lu Y, Shao-horn Y (2012) Evidence of catalyzed oxidation of Li2O2 for rechargeable Li–Air battery applications. Phys Chem Chem Phys 14:10540–10546. doi:10.1039/c2cp41761h Google Scholar
  116. 116.
    Cho MH, Trottier J, Gagnon C et al (2014) The effects of moisture contamination in the Li–O2 battery. J Power Sources 268:565–574. doi:10.1016/j.jpowsour.2014.05.148 Google Scholar
  117. 117.
    Schwenke KU, Meini S, Wu X et al (2013) Stability of superoxide radicals in glyme solvents for non-aqueous Li–O2 battery electrolytes. Phys Chem Chem Phys 15:11830–11839. doi:10.1039/c3cp51531a Google Scholar
  118. 118.
    Gowda SR, Brunet A, Wallraff GM, Mccloskey BD (2013) Implications of CO2 contamination in rechargeable nonaqueous Li–O2 batteries. J Phys Chem Lett 4:276–279Google Scholar
  119. 119.
    Li F, Zhang T, Zhou H (2013) Challenges of non-aqueous Li–O2 batteries: electrolytes, catalysts, and anodes. Energy Environ Sci 6:1125–1141. doi:10.1039/c3ee00053b Google Scholar
  120. 120.
    Xu W, Wang J, Ding F et al (2014) Lithium metal anodes for rechargeable batteries. Energy Environ Sci 7:513. doi:10.1039/c3ee40795k Google Scholar
  121. 121.
    Assary RS, Lu J, Du P et al (2012) The effect of oxygen crossover on the anode of a Li–O2 battery using an ether-based solvent: insights from experimental and computational studies. ChemSusChem 6:51–55. doi:10.1002/cssc.201200810 Google Scholar
  122. 122.
    Shui J-L, Okasinski JS, Kenesei P et al (2013) Reversibility of anodic lithium in rechargeable lithium-oxygen batteries. Nat Commun 4:2255. doi:10.1038/ncomms3255 Google Scholar
  123. 123.
    Roberts M, Younesi R, Richardson W et al (2014) Increased cycling efficiency of lithium anodes in dimethyl sulfoxide electrolytes for use in Li–O2 batteries. ECS Electrochem Lett 3:A62–A65. doi:10.1149/2.007406eel Google Scholar
  124. 124.
    Adams J, Karulkar M, Anandan V (2013) Evaluation and electrochemical analyses of cathodes for lithium-air batteries. J Power Sources 239:132–143. doi:10.1016/j.jpowsour.2013.03.140 Google Scholar
  125. 125.
    Yoon DH, Park YJ (2014) Characterization of real cyclic performance of air electrode for Li–Air batteries. J Electroceram. doi:10.1007/s10832-014-9937-x
  126. 126.
    Ottakam Thotiyl MM, Freunberger SA, Peng Z et al (2013) A stable cathode for the aprotic Li–O2 battery. Nat Mater 12:1–7. doi:10.1038/nmat3737 Google Scholar
  127. 127.
    Chen Y, Freunberger SA, Peng Z et al (2013) Charging a Li–O2 battery using a redox mediator. Nat Chem 5:489–494. doi:10.1038/NCHEM.1646 Google Scholar
  128. 128.
    Tan P, Shyy W, An L et al (2014) A gradient porous cathode for non-aqueous lithium–air batteries leading to a high capacity. Electrochem Commun 46:111–114. doi:10.1016/j.elecom.2014.06.026 Google Scholar
  129. 129.
    Black R, Lee J-H, Adams B et al (2013) The role of catalysts and peroxide oxidation in lithium-oxygen batteries. Angew Chem Int Ed Engl 52:392–396. doi:10.1002/anie.201205354 Google Scholar
  130. 130.
    Kim DS, Park YJ (2014) Effect of multi-catalysts on rechargeable Li–Air batteries. J Alloys Compd 591:164–169. doi:10.1016/j.jallcom.2013.12.208 Google Scholar
  131. 131.
    Li F, Kitaura H, Zhou H (2013) The pursuit of rechargeable solid-state Li–Air batteries. Energy Environ Sci 6:2302. doi:10.1039/c3ee40702k Google Scholar
  132. 132.
    Thackeray MM, Chan MKY, Trahey L et al (2013) Vision for designing high-energy, hybrid Li Ion/Li–O2 cells. J Phys Chem Lett 4:3607–3611Google Scholar
  133. 133.
    Trahey L, Karan NK, Chan MKY et al (2012) Synthesis, characterization, and structural modeling of high-capacity, dual functioning MnO2 electrode/electrocatalysts for Li–O2 cells. Adv Energy Mater 3:75–84. doi:10.1002/aenm.201200037 Google Scholar
  134. 134.
    Kirklin S, Chan M, Trahey L et al (2014) High-throughput screening of high-capacity electrodes for hybrid Li-ion/Li–O2 cells. Phys Chem Chem Phys 16:22073–22082. doi:10.1039/C4CP03597F Google Scholar
  135. 135.
    Popel AS (1989) Theory of oxygen transport to tissue. Crit Rev Bioeng 17:257–321Google Scholar
  136. 136.
    Kohen R, Nyska A (2002) Oxidation of biological systems: oxidative stress phenomena, antioxidants, redox reactions, and methods for their quantification. Toxicol Pathol 30:620–650. doi:10.1080/0192623029016672 Google Scholar
  137. 137.
    Kim BG, Kim S, Lee H, Choi JW (2014) Wisdom from the human eye: a synthetic melanin radical scavenger for improved cycle life of Li–O2 battery. Chem Mater 26:4757–4764Google Scholar
  138. 138.
    Wang Y, Zheng D, Yang X-Q, Qu D (2011) High rate oxygen reduction in non-aqueous electrolytes with the addition of perfluorinated additives. Energy Environ Sci 4:3697. doi:10.1039/c1ee01556g Google Scholar
  139. 139.
    Li XL, Huang J, Faghri A (2014) Modeling study of a Li–Air battery with an active cathode. Energy 1–12. doi:10.1016/j.energy.2014.12.062
  140. 140.
    Nemanick EJ, Hickey RP (2014) The effects of O2 pressure on Li–O2 secondary battery discharge capacity and rate capability. J Power Sources 252:248–251. doi:10.1016/j.jpowsour.2013.12.016 Google Scholar
  141. 141.
    Zhang Y, Zhang H, Li J et al (2013) The use of mixed carbon materials with improved oxygen transport in a lithium–air battery. J Power Sources 240:390–396. doi:10.1016/j.jpowsour.2013.04.018 Google Scholar
  142. 142.
    Balaish M, Kraytsberg A, Ein-Eli Y (2013) Realization of an artificial three-phase reaction zone in a Li–Air battery. ChemElectroChem n/a–n/a. doi:10.1002/celc.201300055
  143. 143.
    Li C, Fontaine O, Freunberger SA et al (2014) Aprotic Li–O2 battery: influence of complexing agents on oxygen reduction in an aprotic solvent. J Phys Chem C 118:3393–3401. doi:10.1021/jp4093805 Google Scholar
  144. 144.
    Hartmann P, Bender CL, Vračar M et al (2013) A rechargeable room-temperature sodium superoxide (NaO2) battery. Nat Mater 12:228–232. doi:10.1038/nmat3486 Google Scholar
  145. 145.
    Ha S, Kim J-K, Choi A et al (2014) Sodium-metal halide and sodium-air batteries. ChemPhysChem 15:1971–1982. doi:10.1002/cphc.201402215 Google Scholar
  146. 146.
    Liu W, Sun Q, Yang Y et al (2013) An enhanced electrochemical performance of a sodium-air battery with graphene nanosheets as air electrode catalysts. Chem Comm 49:1951–1953. doi:10.1039/c3cc00085k Google Scholar
  147. 147.
    Ren X, Wu Y (2013) A low-overpotential potassium-oxygen battery based on potassium superoxide. J Am Chem Soc 135:2923–2926. doi:10.1021/ja312059q Google Scholar
  148. 148.
    Shiga T, Hase Y, Yagi Y et al (2014) Catalytic cycle employing a TEMPO—anion complex to obtain a secondary Mg–O2 battery. J Phys Chem Lett 5:1648–1652. doi:10.1021/jz500602r Google Scholar
  149. 149.
    Shiga T, Hase Y, Kato Y et al (2013) A rechargeable non-aqueous Mg–O2 battery. Chem Commun (Camb) 49:9152–9154. doi:10.1039/c3cc43477j Google Scholar
  150. 150.
    Revel R, Audichon T, Gonzalez S (2014) Non-aqueous aluminium-air battery based on ionic liquid electrolyte. J Power Sources 272:415–421. doi:10.1016/j.jpowsour.2014.08.056 Google Scholar
  151. 151.
    Gruber PW, Medina PA, Keoleian GA et al (2011) Global lithium availability: a constraint for electric vehicles? J Ind Ecol 15:760–775. doi:10.1111/j.1530-9290.2011.00359.x Google Scholar
  152. 152.
    Sangster J, Pelton A (1992) The Li–O (lithium-oxygen) system. J Phase Equilibria 13:296–299Google Scholar
  153. 153.
    Lau KC, Curtiss LA, Greeley J (2011) Density functional investigation of the thermodynamic stability of lithium oxide bulk crystalline structures as a function of oxygen pressure. J Phys Chem C 115:23625–23633. doi:10.1021/jp206796h
  154. 154.
    Muldoon J, Bucur CB, Gregory T (2014) Quest for nonaqueous multivalent secondary batteries: magnesium and beyond. Chem Rev 114:11683–11720. doi:10.1021/cr500049y Google Scholar
  155. 155.
    Lu YC, Kwabi DG, Yao KPC et al (2011) The discharge rate capability of rechargeable Li–O2 batteries. Energy Environ Sci 4:2999–3007. doi:10.1039/c1ee01500a Google Scholar
  156. 156.
    Kim BG, Kim H-J, Back S et al (2014) Improved reversibility in lithium-oxygen battery: understanding elementary reactions and surface charge engineering of metal alloy catalyst. Sci Rep 4:4225. doi:10.1038/srep04225 Google Scholar
  157. 157.
    Hayashi K, Shima K, Sugiyama F (2013) A mixed aqueous/aproticssodium/air cell using a NASICON ceramic separator. J Electrochem Soc 160:A1467–A1472. doi:10.1149/2.067309jes Google Scholar
  158. 158.
    Downing BW (2012) Metal—air technology. Electrochem Technol Energy Storage Convers. doi:10.1002/9783527639496.ch6
  159. 159.
    Cooper JF (1977) High performance metal/air fuel cells. OSTI ID: 7084912. doi:10.2172/7084912
  160. 160.
    Hosseiny SS, Saakes M, Wessling M (2011) A polyelectrolyte membrane-based vanadium/air redox flow battery. Electrochem Commun 13:751–754. doi:10.1016/j.elecom.2010.11.025 Google Scholar
  161. 161.
    Walker CW, Walker J (2012) Molybdenum/air battery and cell design. 2: US Patent 8148020 B2Google Scholar
  162. 162.
    Wagner OC (1969) Secondary cadmium-air cells. J Electrochem Soc 116:693. doi:10.1149/1.2412023 Google Scholar
  163. 163.
    Egan DR, Ponce de León C, Wood RJK et al (2013) Developments in electrode materials and electrolytes for aluminium–air batteries. J Power Sources 236:293–310. doi:10.1016/j.jpowsour.2013.01.141 Google Scholar
  164. 164.
    Mori R (2014) A novel aluminium–air secondary battery with long-term stability. RSC Adv 4:1982. doi:10.1039/c3ra44659j Google Scholar
  165. 165.
    Zhong X, Zhang H, Liu Y et al (2012) High-capacity silicon-air battery in alkaline solution. ChemSusChem 5:177–180. doi:10.1002/cssc.201100426 Google Scholar
  166. 166.
    Jiang R (2007) Combinatorial electrochemical cell array for high throughput screening of micro-fuel-cells and metal/air batteries. Rev Sci Instrum 78:072209. doi:10.1063/1.2755439 Google Scholar
  167. 167.
    Inoishi A, Ju Y-W, Ida S, Ishihara T (2013) Mg-air oxygen shuttle batteries using a ZrO2-based oxide ion-conducting electrolyte. Chem Commun (Camb) 49:4691–4693. doi:10.1039/c3cc40880a Google Scholar
  168. 168.
    Pujare NU, Semkow KW, Sammells AF (1988) A calcium oxygen secondary battery. J Electrochem Soc 135:260–261. doi:10.1149/1.2095574 Google Scholar
  169. 169.
    Zhao X, Gong Y, Li X et al (2013) A new solid oxide molybdenum–air redox battery. J Mater Chem A 1:14858. doi:10.1039/c3ta12726e Google Scholar
  170. 170.
    Zhao X, Li X, Gong Y et al (2013) A high energy density all solid-state tungsten-air battery. Chem Commun (Camb) 49:5357–5359. doi:10.1039/c3cc42075b Google Scholar
  171. 171.
    Zhao X, Li X, Gong Y et al (2014) A novel intermediate-temperature all ceramic iron–air redox battery: the effect of current density and cycle duration. RSC Adv 4:22621. doi:10.1039/c4ra02768j Google Scholar
  172. 172.
    Desclaux P, Nürnberger S, Stimming U (2010) Direct carbon fuel cells. In: Steinberge-Wilckens R, Lehnert W (eds) Innovations in fuel cell technologies. The Royal Society of Chemistry, Cambridge, p 190–211 doi:10.1039/9781849732109-00190
  173. 173.
    Cohn G, Starosvetsky D, Hagiwara R et al (2009) Silicon–air batteries. Electrochem Commun 11:1916–1918. doi:10.1016/j.elecom.2009.08.015 Google Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  1. 1.University of MichiganAnn ArborUSA

Personalised recommendations