Advertisement

Lung Ultrasound for the Diagnosis and Management of an Acute Circulatory Failure: The FALLS-Protocol (Fluid Administration Limited by Lung Sonography) – One Main Extension of the BLUE-Protocol

  • Daniel A. Lichtenstein

Abstract

The potential of lung ultrasound in detecting interstitial syndrome provides an original piece of information which will be used for the sequential diagnosis of a circulatory failure. In the management of shock, it allows to avoid two issues: giving too much fluid, a concern for the modern generation, and keeping a patient in occult hypovolemia, another killer, probably as substantial. The FALLS-protocol may locate the critically ill patient between these two extreme issues, by proposing the appropriate amount of fluid resuscitation.

Using a simple approach considering a focused part of cardiac sonography, some venous sonography, and this simple part of lung ultrasound which visualizes a direct parameter of volemia, an alternative decision tree for hemodynamic assessment can be proposed.

Keywords

Septic Shock Central Venous Pressure Cardiogenic Shock Fluid Overload Fluid Therapy 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Glossary

Clinical volemia 

This part of volemia which determines the beginning of fluid overload at the main vital organ, normally fluid-free.

FALLS-endpoint 

The instant where B-lines replace A-lines under fluid therapy.

FALLS-PLR-protocol 

Passive leg raising initiating a fluid therapy.

FALLS-point 

Applying the probe at anterior lung watching for a change from A-lines to B-lines during fluid therapy.

FALLS-protocol 

Protocol analyzing the cause of a shock using simple cardiac sonography and lung ultrasound.

FALLS-responsiveness 

Defined by an A-profile (or equivalents) in a patient without ultrasound signs of obstructive or left cardiogenic shock. Clearance for fluid therapy.

Round-FALLS-protocol 

Ultrasound search for a site of sepsis or hypovolemia done during the FALLS-protocol.

Supplementary material

Video 30.1

Standard search for a tension pneumothorax. The probe is quietly applied at anterior BLUE-points, or nearby (it does not matter a lot, since the pneumothorax is supposed to be substantial). Note the Carmen maneuver, searching for B-lines, therefore increasing the sensitivity of the A-line sign (MOV 2878 kb)

Video 30.2

Inferior caval vein. In this patient who had the providence of a good window, the IVC can be seen behind the gallbladder (head of patient on left of image). No respiratory variation, suggesting a reasonable fluid therapy. See the ebb and flow of microparticles within the lumen, with inspiratory changes of direction (backward), using this 1982 technology (MOV 2088 kb)

References

  1. 1.
    Swan HJ, Ganz W, Forrester J, Marcus H, Diamond G, Chonette D (1970) Catheterization of the heart in man with use of a flow-directed balloon-tipped catheter. N Engl J Med 283:447–451PubMedCrossRefGoogle Scholar
  2. 2.
    Cholley BP, Payen D (2003) Pulmonary artery catheters in high-risk surgical patients. N Engl J Med 348:2035–2037PubMedGoogle Scholar
  3. 3.
    Braunwald E (1984) Heart disease. W.B. Saunders Company, Philadelphia, p 173Google Scholar
  4. 4.
    Braunwald E, Rahimtoola SH, Loeb HS (1961) Left atrial and left ventricular pressure in subjects without cardiovascular disease. Circulation 24:267–274PubMedCrossRefGoogle Scholar
  5. 5.
    Flores ED, Lange RA, Hillis LD (1990) Relation of mean pulmonary arterial wedge pressure and left ventricular end-diastolic pressure. Am J Cardiol 66:1532–1533PubMedCrossRefGoogle Scholar
  6. 6.
    Pinsky MR (2003) Clinical significance of pulmonary artery occlusion pressure. Intensive Care Med 29:175–178PubMedCrossRefGoogle Scholar
  7. 7.
    Boldt J (2000) Volume therapy in the intensive care patient – we are still confused, but…. Intensive Care Med 26:1181–1192PubMedCrossRefGoogle Scholar
  8. 8.
    Connors AF Jr, Speroff T, Dawson NV, Thomas C, Harrell FE Jr, Wagner D, Desbiens N, Goldman L, Wu AW, Califf RM, Fulkerson WJ Jr, Vidaillet H, Broste S, Bellamy P, Lynn J, Knaus WA (1996) The effectiveness of right heart catheterization in the initial care of critically ill patients. SUPPORT investigators. J Am Med Assoc 276:889–897CrossRefGoogle Scholar
  9. 9.
    Krausz MM, Perel A, Eimerl D, Cotev S (1977) Cardiopulmonary effects of volume loading in patients in septic shock. Ann Surg 185:429–434PubMedPubMedCentralCrossRefGoogle Scholar
  10. 10.
    Packman RI, Rackow EC (1983) Optimum left heart filling pressure during fluid resuscitation of patients with hypovolemic and septic shock. Crit Care Med 11:165–169PubMedCrossRefGoogle Scholar
  11. 11.
    Zion MM, Balkin MM, Rosenmann D, Goldbourt U, Reicher-Reiss H, Kaplinsky E, Behar S (1990) Use of the pulmonary artery catheter in patients with acute myocardial infarction. Chest 98:1331–1335PubMedCrossRefGoogle Scholar
  12. 12.
    Mimoz O, Rauss A, Rekik N, Brun-Buisson C, Lemaire F, Brochard L (1994) Pulmonary artery catheterization in critically ill patients: a prospective analysis of outcome changes associated with catheter prompted changes in therapy. Crit Care Med 22:573–579PubMedCrossRefGoogle Scholar
  13. 13.
    Wagner JG, Leatherman JW (1998) Right ventricular end diastolic volume as a predictor of the hemodynamic response to a fluid challenge. Chest 113:1048–1054PubMedCrossRefGoogle Scholar
  14. 14.
    Wilson J, Woods I, Fawcett J, Whall R, Dibb W, Morris C, McManus E (1999) Reducing the risk of major elective surgery: randomized controlled trial of preoperative optimisation of oxygen delivery. Br Med J 318:1099–1103CrossRefGoogle Scholar
  15. 15.
    Rhodes A, Cusack RJ, Newman PJ, Grounds RM, Bennett ED (2002) A randomised, controlled trial of the pulmonary artery catheter in critically ill patients. Intensive Care Med 28:256–264PubMedCrossRefGoogle Scholar
  16. 16.
    Richard C, Warszawski J, Anguel N, Deye N, Combes A, Barnoud D, Boulain T, Lefort Y, Fartoukh M, Baud F, Boyer A, Brochard L, Teboul JL (2003) French Pulmonary Artery Catheter Study Group – Early use of the pulmonary artery catheter and outcomes in patients with shock and acute respiratory distress syndrome: a randomized controlled trial. J Am Med Assoc 290:2713–2720CrossRefGoogle Scholar
  17. 17.
    Sandham JD, Hull RD, Brant RF, Knox L, Pineo GF, Doig CJ, Laporta DP, Viner S, Passerini L, Devitt H, Kirby A, Jacka M (2003) A randomized, controlled trial of the use of pulmonary artery catheters in high-risk surgical patients. N Engl J Med 348:5–14PubMedCrossRefGoogle Scholar
  18. 18.
    Monnet X, Richard C, Teboul JL (2004) The pulmonary artery catheter in critically ill patients. Does it change outcome? Minerva Anestesiol 70:219–224PubMedGoogle Scholar
  19. 19.
    Shah MR, Hasselblad V, Stevenson LW, Binanay C, O’Connor CM, Sopko G, Califf RM (2005) Impact of the pulmonary artery catheter in critically ill patients: meta-analysis of randomized clinical trials. JAMA 294:1664–1670PubMedCrossRefGoogle Scholar
  20. 20.
    Sakr Y, Vincent JL, Reinhart K, Payen D, Wiedermann CJ, Zandstra DF, Sprung CL (2005) Use of the pulmonary artery catheter is not associated with worse outcome in the ICU. Chest 128:2722–2731PubMedCrossRefGoogle Scholar
  21. 21.
    Simini B (2005) Pulmonary artery catheters in intensive care. Lancet 366:435–437PubMedCrossRefGoogle Scholar
  22. 22.
    Harvey S, Harrison DA, Singer M, Ashcroft J, Jones CM, Elbourne D, Brampton W, Williams D, Young D, Rowan K (2005) PAC-Man study collaboration. Assessment of the clinical effectiveness of pulmonary artery catheters in management of patients in intensive care (PAC-Man): a randomised controlled trial. Lancet 366(9484):472–477PubMedCrossRefGoogle Scholar
  23. 23.
    Osman D, Ridel C, Rey P, Monnet X, Anguel N, Richard C, Teboul JL (2007) Cardiac filling pressures are not appropriate to predict hemodynamic response to volume challenge. Crit Care Med 35:64–68PubMedCrossRefGoogle Scholar
  24. 24.
    Gnaegi A, Feihl F, Perret C (1997) Intensive care physicians insufficient knowledge of right-heart catheterization at the bedside: time to act? Crit Care Med 25:213–220PubMedCrossRefGoogle Scholar
  25. 25.
    Squara P, Bennett D, Perret C (2002) Pulmonary artery catheter: does the problem lie in the users? Chest 121:2009–2015PubMedCrossRefGoogle Scholar
  26. 26.
    Pinsky MR, Vincent JL (2005) Let us use the pulmonary artery catheter correctly and only when we need it. Crit Care Med 33:1119–1122PubMedCrossRefGoogle Scholar
  27. 27.
    Stoddard MF, Liddell NE, Vogel RL, Longaker RA, Dawkins PR (1992) Comparison of cardiac dimensions by transesophageal and transthoracic echocardiography. Am Heart J 124(3):675–678PubMedCrossRefGoogle Scholar
  28. 28.
    Vieillard-Baron A, Slama M, Mayo P, Charron C, Amiel JB, Esterez C, Leleu F, Repesse X, Vignon P (2013) A pilot study on safety and clinical utility of a single-use 72-hour indwelling transesophageal echocardiography probe. Intensive Care Med 39(4):629–635PubMedCrossRefGoogle Scholar
  29. 29.
    Jardin F, Valtier B, Beauchet A, Dubourg O, Bourdarias JP (1994) Invasive monitoring combined with two-dimensional echocardiographic study in septic shock. Intensive Care Med 20:550–554PubMedCrossRefGoogle Scholar
  30. 30.
    Benjamin E, Oropello JM, Stein JS (1996) Transesophageal echocardiography in the management of the critically ill patient. Curr Surg 53:137–141Google Scholar
  31. 31.
    Costachescu T, Denault A, Guimond JG, Couture P et al (2002) The hemodynamically unstable patient in the ICU: hemodynamic vs. transesophageal echocardiographic monitoring. Crit Care Med 30:1214–1223PubMedCrossRefGoogle Scholar
  32. 32.
    Boulain T, Achard JM, Teboul JL, Richard C, Perrotin D, Ginies G (2002) Changes in BP induced by passive leg raising predict response to fluid loading in critically ill patients. Chest 121:1245–1252PubMedCrossRefGoogle Scholar
  33. 33.
    Axler O, Megarbane B, Lentschener C, Fernandez H (2003) Comparison of cardiac output measured with echocardiographic volumes and aortic Doppler methods during mechanical ventilation. Intensive Care Med 29:208–217PubMedCrossRefGoogle Scholar
  34. 34.
    Vieillard-Baron A, Chergui K, Rabiller A, Peyrouset O, Page B, Beauchet A, Jardin F (2004) Superior vena caval collapsibility as a gauge of volume status in ventilated septic patients. Intensive Care Med 30:1734–1739PubMedCrossRefGoogle Scholar
  35. 35.
    Slama M, Masson H, Teboul JL et al (2004) Monitoring of respiratory variations of aortic blood flow velocity using esophageal Doppler. Intensive Care Med 30:1182–1187PubMedCrossRefGoogle Scholar
  36. 36.
    Monnet X, Rienzo M, Osman D, Anguel N, Richard C, Pinsky MR, Teboul JL (2005) Esophageal Doppler monitoring predicts fluid responsiveness in critically ill ventilated patients. Intensive Care Med 31:1195–1201PubMedCrossRefGoogle Scholar
  37. 37.
    Poelaert JI, Schupfer G (2005) Hemodynamic monitoring utilizing transesophageal echocardiography: the relationships among pressure, flow, and function. Chest 127:379–390PubMedCrossRefGoogle Scholar
  38. 38.
    Via G, Braschi A (2006) Echocardiographic assessment of cardiovascular failure. Minerva Anesthesiol 72:495–501Google Scholar
  39. 39.
    Price S, Nicol E, Gibson DG, Evans TW (2006) Echocardiography in the critically ill: current and potential roles. Intensive Care Med 32:48–59PubMedCrossRefGoogle Scholar
  40. 40.
    Perel A (1998) Assessing fluid responsiveness by the systolic pressure variation in mechanically ventilated patients. Systolic pressure variation as a guide to fluid therapy in patients with sepsis-induced hypotension. Anesthesiology 89:1309–1310PubMedCrossRefGoogle Scholar
  41. 41.
    Shoemaker WC (1996) Oxygen transport and oxygen metabolism in shock and critical illness. Invasive and noninvasive monitoring of circulatory dysfunction and shock. Crit Care Clin 12:939–969PubMedCrossRefGoogle Scholar
  42. 42.
    Taylor DE, Simonson SG (1996) Use of near-infrared spectroscopy to monitor tissue oxygenation. New Horiz 4:420–425PubMedGoogle Scholar
  43. 43.
    Tavernier B, Makhotine O, Lebuffe G, Dupont J, Scherpereel P (1998) Systolic pressure variation as a guide to fluid therapy in patients with sepsis-induced hypotension. Anesthesiology 89:1313–1321PubMedCrossRefGoogle Scholar
  44. 44.
    Michard F, Boussat S, Chemla D, Anguel N, Mercat A, Lecarpentier Y, Richard C, Pinsky MF, Teboul JL (2000) Relation between respiratory changes in arterial pulse pressure and fluid responsiveness in septic patients with acute circulatory failure. Am J Respir Crit Care Med 162:134–138PubMedCrossRefGoogle Scholar
  45. 45.
    Michard F, Teboul JL (2002) Predicting fluid responsiveness in ICU patients: a critical analysis of the evidence. Chest 121:2000–2008PubMedCrossRefGoogle Scholar
  46. 46.
    Reuter DA, Felbinger TW, Schmidt C, Kilger E, Goedje O, Lamm P, Goetz AE (2002) Stroke volume variation for assessment of cardiac responsiveness to volume loading in mechanically ventilated patients after cardiac surgery. Intensive Care Med 28:392–398PubMedCrossRefGoogle Scholar
  47. 47.
    Pinsky MR (2004) Using ventilation-induced aortic pressure and flow variation to diagnose preload responsiveness. Intensive Care Med 30:1008–1010PubMedCrossRefGoogle Scholar
  48. 48.
    Perel A, Minkovich L, Preisman S, Abiad M, Segal E, Coriat P (2005) Assessing fluid responsiveness by a standardized ventilatory maneuver: the respiratory systolic variation test. Anesth Analg 100:942–945PubMedCrossRefGoogle Scholar
  49. 49.
    Combes A, Arnoult F, Trouillet JL (2004) Tissue Doppler imaging estimation of pulmonary artery occlusion pressure in ICU patients. Intensive Care Med 30:75–81PubMedCrossRefGoogle Scholar
  50. 50.
    Pavlinic I, Tvrtkovic N, Holcer D (2008) Morphological identification of the soprano pipistrelle in Croatia. Hystrix It J Mamm 19:47–53Google Scholar
  51. 51.
    Magder S (2005) How to use central venous pressure measurements. Curr Opin Crit Care 11:264–270PubMedCrossRefGoogle Scholar
  52. 52.
    Pinsky MR (2003) Hemodynamic monitoring in the intensive care unit. Clin Chest Med 24:549–560PubMedCrossRefGoogle Scholar
  53. 53.
    Pinsky MR, Payen D (2005) Functional hemodynamic monitoring. Crit Care 9:566–572PubMedPubMedCentralCrossRefGoogle Scholar
  54. 54.
    Vincent JL, Weil MH (2006) Fluid challenge revisited. Crit Care Med 34:1333–1337PubMedCrossRefGoogle Scholar
  55. 55.
    Michard F, Teboul JL (2000) Using heart-lung interactions to assess fluid responsiveness during mechanical ventilation. Crit Care 4:282–289PubMedPubMedCentralCrossRefGoogle Scholar
  56. 56.
    Rex S, Brose S, Metzelder S, Huneke R, Schalte G, Autschbach R, Rossaint R, Buhre W (2004) Prediction of fluid responsiveness in patients during cardiac surgery. Br J Anaesth 93:782–788PubMedCrossRefGoogle Scholar
  57. 57.
    Fietsam RJ, Villalba M, Glover JL, Clark K (1989) Intra-abdominal compartment syndrome as a complication of ruptured abdominal aortic aneurysm repair. Am Surg 55:396–402PubMedGoogle Scholar
  58. 58.
    Malbrain ML, Cheatham ML, Kirkpatrick A et al (2006) Results from the international conference of experts on intra-abdominal hypertension and abdominal compartment syndrome. Intensive Care Med 32:1722–1732PubMedCrossRefGoogle Scholar
  59. 59.
    de Backer D, Creteur J, Preiser JC et al (2002) Microvascular blood flow is altered in patients with sepsis. Am J Respir Crit Care Med 166:98–104PubMedCrossRefGoogle Scholar
  60. 60.
    Sakr Y, Dubois MJ, De Backer D et al (2004) Persistent microcirculatory alterations are associated with organ failure and death in patients with septic shock. Crit Care Med 32:1825–1831PubMedCrossRefGoogle Scholar
  61. 61.
    Dellinger RP, Levy MM, Carlet JM, Bion J, Parker MM et al (2008) Surviving Sepsis Campaign. International guidelines for management of severe sepsis and septic shock. Intensive Care Med 341:17–60CrossRefGoogle Scholar
  62. 62.
    Abid O, Akca S, Haji-Michael P, Vincent JL (2000) Strong vasopressor support may be futile in the intensive care unit patient with multiple organ failure. Crit Care Med 28:947–949PubMedCrossRefGoogle Scholar
  63. 63.
    Magder S (1998) More respect for the CVP (editorial). Intensive Care Med 24:651–653PubMedCrossRefGoogle Scholar
  64. 64.
    Walley KR (2005) Shock. In: Hall JB, Schmidt GA, Wood DH (eds) Principles of critical care, 3rd edn. McGraw Hill, New York, pp 249–265Google Scholar
  65. 65.
    Jardin F (1997) PEEP, tricuspid regurgitation and cardiac output. Intensive Care Med 23:806–807PubMedCrossRefGoogle Scholar
  66. 66.
    Antonelli M, Levy M, Andrews P, Chastre J, Hudson LD, Manthous C, Meduri GU, Moreno RP, Putensen C, Stewart T, Torres A (2007) Hemodynamic monitoring in shock and implications for management. International Consensus Conference, Paris, April 27–28, 2006. Intensive Care Med 33:575–590PubMedCrossRefGoogle Scholar
  67. 67.
    Teboul JL (1991) Pression capillaire pulmonaire. In: Dhainaut JF, Payen D (eds) Hémodynamique, concepts et pratique en réanimation. Masson, Paris, pp 107–121Google Scholar
  68. 68.
    Schumaker PT, Cain SM (1987) The concept of a critical oxygen delivery. Intensive Care Med 13:223–229CrossRefGoogle Scholar
  69. 69.
    Hayes MA, Timmins AC, Yau EH et al (1994) Elevation of systemic oxygen delivery in the treatment of critically ill patients. N Engl J Med 330(24):1717–1722PubMedCrossRefGoogle Scholar
  70. 70.
    Rivers E, Nguyen B, Havstad S, Ressler J, Muzzin A, Knoblich B, Peterson E, Tomlanovich M (2001) Early goal-directed therapy in the treatment of severe sepsis and septic shock. N Engl J Med 345:1368–1377PubMedCrossRefGoogle Scholar
  71. 71.
    ProCESS Investigators, Yealy DM, Kellum JA, Huang DT, Barnato AE, Weissfeld LA, Pike F, Terndrup T, Wang HE, Hou PC, LoVecchio F, Filbin MR, Shapiro NI, Angus DC (2014) A randomized trial of protocol-based care for early septic shock. N Engl J Med 370(18):1683–1693. doi: 10.1056/NEJMoa1401602 CrossRefGoogle Scholar
  72. 72.
    Peake SL, Delaney A, Bailey M, Bellomo R, Cameron PA et al, ARISE Investigators (2014) Goal-directed resuscitation for patients with early septic shock. N Engl J Med 371(16):1496–1506Google Scholar
  73. 73.
    Bellamy MC (2006) Wet, dry or something else? Br J Anaesth 97(6):755–757PubMedCrossRefGoogle Scholar
  74. 74.
    Hollenberg SM, Ahrens TS, Annane D, Astiz ME, Chalfin DB, Dasta JF, Heard SO, Martin C, Napolitano LM, Susla GM, Totaro R, Vincent JL, Zanotti-Cavazzoni S (2004) Practice parameters for hemodynamic support of sepsis in adult patients: 2004 update. Crit Care Med 32:1928–1948PubMedCrossRefGoogle Scholar
  75. 75.
    Vieillard-Baron A, Slama M, Cholley B, Janvier G, Vignon P (2008) Echocardiography in the intensive care unit: from evolution to revolution? Intensive Care Med 34:243–249PubMedCrossRefGoogle Scholar
  76. 76.
    Vieillard-Baron A, Slama M (2008) Prise en charge hémodynamique du sepsis sévère et du choc septique à l’aide de l’échocardiographie. In: Vignon P (ed) Echocardiographie Doppler chez le patient en état critique. Elsevier SRLF, Paris, pp 97–114Google Scholar
  77. 77.
    Lichtenstein D, Mezière G, Biderman P, Gepner A, Barré O (1997) The comet-tail artifact : an ultrasound sign of alveolar-interstitial syndrome. Am J Respir Crit Care Med 156:1640–1646PubMedCrossRefGoogle Scholar
  78. 78.
    Lichtenstein D, Mezière G (1998) A lung ultrasound sign allowing bedside distinction between pulmonary edema and COPD: the comet-tail artifact. Intensive Care Med 24:1331–1334PubMedCrossRefGoogle Scholar
  79. 79.
    Lichtenstein D, Mezière G (2008) Relevance of lung ultrasound in the diagnosis of acute respiratory failure – the BLUE-protocol. Chest 134:117–125PubMedPubMedCentralCrossRefGoogle Scholar
  80. 80.
    Lemaire F, Brochard L (2001) ARDS. In: Réanimation Médicale. Masson, Paris, pp 807–810Google Scholar
  81. 81.
    Walley KR, Wood LDH (1998) Ventricular dysfunction in critical illness. In: Hall JB, Schmidt GA, Wood LDH (eds) Principles of critical care, 2nd edn. McGraw Hill, New York, pp 303–312Google Scholar
  82. 82.
    Staub NC (1974) Pulmonary edema. Physiol Rev 54:678–811PubMedGoogle Scholar
  83. 83.
    Guyton CA, Hall JE (1996) Textbook of medical physiology, 9th edn. W.B. Saunders Company, Philadelphia, pp 496–497Google Scholar
  84. 84.
    Chait A, Cohen HE, Meltzer LE, VanDurme JP (1972) The bedside chest radiograph in the evaluation of incipient heart failure. Radiology 105:563–566PubMedCrossRefGoogle Scholar
  85. 85.
    Safran D, Journois D (1995) Circulation pulmonaire. In: Samii K (ed) Anesthésie Réanimation Chirurgicale, 2nd edn. Flammarion, Paris, pp 31–38Google Scholar
  86. 86.
    Rémy-Jardin M, Rémy J (1995) Œdème interstitiel. In: Imagerie nouvelle de la pathologie thoracique quotidienne. Springer, Paris, pp 137–143Google Scholar
  87. 87.
    Lichtenstein D, Mezière G, Lagoueyte JF, Biderman P, Goldstein I, Gepner A (2009) A-lines and B-lines: lung ultrasound as a bedside tool for predicting pulmonary artery occlusion pressure in the critically ill. Chest 136:1014–1020PubMedCrossRefGoogle Scholar
  88. 88.
    Weil MH, Shubin H (1971) Proposed reclassification of shock states with special reference to distributive defects. Adv Exp Med Biol 23:13PubMedCrossRefGoogle Scholar
  89. 89.
    Natanson C, Danner RL, Reilly JM, Doerfler ML, Hoffman WD, Akin GL, Hosseini JM, Banks SM, Elin RJ, MacVittie TJ et al (1990) Antibiotics versus cardiovascular support in a canine model of human septic shock. Am J Physiol 259:H1440–H1447PubMedGoogle Scholar
  90. 90.
    Cariou A, Marchal F, Dhainaut JF (2000) Traitement du choc septique: objectifs thérapeutiques. In: Actualités en réanimation et urgences 2000. Elsevier, Paris, pp 213–223Google Scholar
  91. 91.
    Gargani L, Lionetti V, Di Cristofano C et al (2007) Early detection of acute lung injury uncoupled to hypoxemia in pigs using ultrasound lung comets. Crit Care Med 35:2769–2774PubMedCrossRefGoogle Scholar
  92. 92.
    Quilici-Ancel N, Laxenaire MC (2001) Choc anaphyllactique. In: “Etats de choc”, Réanimation Médicale. Masson, Paris, pp 719–745Google Scholar
  93. 93.
    Brooks A et al (2007) Major trauma. Elsevier, Edinburgh, p 841Google Scholar
  94. 94.
    Lichtenstein D (1992) [Inferior caval vein and central venous pressure]. In: L’Echographie Générale en Réanimation. Springer, Paris/Berlin/Heidelberg, pp 84–88Google Scholar
  95. 95.
    Lichtenstein D, Jardin F (1994) Noninvasive assessment of CVP using inferior vena cava ultrasound measurement of the inferior vena cava in the critically ill. Réanim Urgences 3:79–82CrossRefGoogle Scholar
  96. 96.
    Lichtenstein D, Jardin F (1996) Calibre de la veine cave inférieure et pression veineuse centrale (Lettre à la Rédaction). Réanim Urgences 5(4):431–434CrossRefGoogle Scholar
  97. 97.
    Barbier C, Loubières Y, Schmitt JM, Hayon J, Ricôme JL, Jardin F, Vieillard-Baron A (2004) Respiratory changes in IVC diameter are helpful in predicting fluid responsiveness in ventilated, septic patients. Intensive Care Med 30:1740–1746PubMedGoogle Scholar
  98. 98.
    Feissel M, Michard F, Faller JP, Teboul JL (2004) The respiratory variation in inferior vena cava diameter as a guide to fluid therapy. Intensive Care Med 32:1832–1838Google Scholar
  99. 99.
    Dénier A (1946) Les ultrasons, leur application au diagnostic. Presse Med 22:307–308Google Scholar
  100. 100.
    Lichtenstein D (2007) Point of care ultrasound: infection control on the ICU. Crit Care Med 35(Suppl):S262–S267PubMedCrossRefGoogle Scholar
  101. 101.
    Thys DM (1984) Pulmonary artery catheterization: past, present and future. Mt Sinai J Med 51:578–584PubMedGoogle Scholar
  102. 102.
    Raper P, Sibbald WJ (1986) Misled by the wedge? The Swan-Ganz catheter and left ventricular preload. Chest 89:427–434PubMedCrossRefGoogle Scholar
  103. 103.
    Tousignant CP, Walsh F, Mazer CD (2000) The use of transesophageal echocardiography for preload assessment in critically ill patients. Anesth Analg 90:351–355PubMedGoogle Scholar
  104. 104.
    Pinsky MR (2003) Pulmonary artery occlusion pressure. Intensive Care Med 29:19–22PubMedCrossRefGoogle Scholar
  105. 105.
    Kumar A, Anel R, Bunnell E, Habet K, Zanotti S, Marshall S, Neumann A, Ali A, Cheang M, Kavinsky C, Parrillo JE (2004) Pulmonary artery occlusion pressure and central venous pressure fail to predict ventricular filling volume, cardiac performance, or the response to volume infusion in normal subjects. Crit Care Med 32:691–699PubMedCrossRefGoogle Scholar
  106. 106.
    Boldt J, Lenz M, Kumle B, Papsdorf M (1998) Volume replacement strategies on intensive care units: results from a postal survey. Intensive Care Med 24:147–151PubMedCrossRefGoogle Scholar
  107. 107.
    Teboul JL et le groupe d’experts de la SRLF (2004) Recommandations d’experts de la SRLF. Indicateurs du remplissage vasculaire au cours de l’insuffisance circulatoire. Réanimation 13:255–263Google Scholar
  108. 108.
    Jardin F (1986) Cœur pulmonaire chronique. In: Jardin F, Dubourg O (eds) L’exploration échocardiographique en médecine d’urgence. Masson, Paris/New York/Barcelone, pp 125–133Google Scholar
  109. 109.
    Jardin F, Farcot JC, Boisante L, Curien N, Margairaz A, Bourdarias JP (1981) Influence of positive end-expiratory pressure on left ventricle performance. N Engl J Med 304(7):387–392PubMedCrossRefGoogle Scholar
  110. 110.
    Vieillard-Baron A (2011) Septic cardiomyopathy. Ann Intensive Care 1(1):6. doi: 10.1186/2110-5820-1-6 PubMedPubMedCentralCrossRefGoogle Scholar
  111. 111.
    Ferguson ND, Meade MO, Hallett DC, Stewart TE (2002) High values of the pulmonary artery wedge pressure in patients with acute lung injury and acute respiratory distress syndrome. Intensive Care Med 28:1073–1077PubMedCrossRefGoogle Scholar
  112. 112.
    de Backer D (2012) Predicting fluid responsiveness: what to do with all these indices? Réanimation 21:123–127CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Daniel A. Lichtenstein
    • 1
  1. 1.Hôpital Ambroise Paré Service de Réanimation MédicaleBoulogne (Paris-West University)France

Personalised recommendations