From (Paraconsistent) Topos Logic to Universal (Topos) Logic

  • Luis Estrada-González
Part of the Studies in Universal Logic book series (SUL)


In this chapter, I describe how complement toposes, with their paraconsistent internal logic, lead to a more abstract theory of topos logic. Béziau’s work in Universal Logic – including his ideas on logical structures, axiomatic emptiness and on logical many-valuedness – is central in this shift and therefore it is with great pleasure that I wrote this chapter for the present commemorative volume.


Standard topos · Complement-topos · Bare topos · (Bare) internal logic 

Mathematics Subject Classification (2000)

03A05 03B53 03G30 18B25 



I want to thank for the support from the CONACyT project CCB 2011 166502 “Aspectos filosóficos de la modalidad”. Diagrams were drawn using Paul Taylor’s diagrams package v. 3.94.


  1. 1.
    Awodey, S.: Structure in mathematics and logic: A categorical perspective. Philos. Math. 4(3), 209–237 (1996) CrossRefzbMATHMathSciNetGoogle Scholar
  2. 2.
    Awodey, S.: Continuity and logical completeness: An application of sheaf theory and topoi. In: van Benthem, M.R.J., Heinzmann, G., Visser, H. (eds.) The Age of Alternative Logics. Assesing Philosophy of Logic and Mathematics Today, pp. 139–149. Springer, Dordrecht (2006) CrossRefGoogle Scholar
  3. 3.
    Bell, J.L.: Lectures on the Foundations of Mathematics. Available at Google Scholar
  4. 4.
    Bell, J.L.: From absolute to local mathematics. Synthese 69, 409–426 (1986) CrossRefMathSciNetGoogle Scholar
  5. 5.
    Bell, J. L.: Toposes and Local Set Theories: An Introduction. Clarendon Press, Oxford (1988) zbMATHGoogle Scholar
  6. 6.
    Béziau, J.-Y.: Universal logic. In: Childers, T., Majer, O. (eds.) Logica ’94 – Proceedings of the 8th International Symposium, pp. 73–93. Czech Academy of Sciences, Prague (1994) Google Scholar
  7. 7.
    Béziau, J.-Y.: From paraconsistent logic to universal logic. Sorites 12, 5–32 (2001) Google Scholar
  8. 8.
    Béziau, J.-Y.: S5 is a paraconsistent logic and so is first-order classical logic. Log. Investig. 9, 301–309 (2002) Google Scholar
  9. 9.
    de Queiroz, G.d.S.: On the Duality between Intuitionism and Paraconsistency, in Portuguese. PhD thesis, Universidade Estadual de Campinas (1998) Google Scholar
  10. 10.
    Estrada-González, L.: Quaternality in a topos-theoretical setting, unpublished typescript (2011) Google Scholar
  11. 11.
    Estrada-González, L.: Complement-topoi and dual intuitionistic logic. Australasian J. Log. 9 26–44 (2010) Google Scholar
  12. 12.
    Estrada-González, L.: Fifty (more or less) shades of logical consequence. In: Arazim, P., Dančák, M. (eds.) LOGICA Yearbook 2014. College Publications, London (2015) Google Scholar
  13. 13.
    Frankowski, S.: Formalization of a plausible inference. Bull. Sect. Log. 33, 41–52 (2004) zbMATHMathSciNetGoogle Scholar
  14. 14.
    Frankowski, S.: P-consequence versus q-consequence operations. Bull. Sect. Log. 33, 197–207 (2004) zbMATHMathSciNetGoogle Scholar
  15. 15.
    Goldblatt, R.: Topoi: The Categorial Analysis of Logic. Studies in Logic and the Foundations of Mathematics, vol. 98, revised edition. North Holland Publishing, Amsterdam (1984) Google Scholar
  16. 16.
    James, W., Mortensen, C.: Categories, sheaves, and paraconsistent logic. Unpublished typescript (1997) Google Scholar
  17. 17.
    Kotas, J., da Costa, N.C.A.: Some problems on logical matrices and valorizations. In: Arruda, A., da Costa, N.C.A., Sette, A.M. (eds.) Proceedings of the Third Brazilian Conference on Mathematical Logic, pp. 131–145. Sociedade Brasileira de Lógica, São Paulo (1980) Google Scholar
  18. 18.
    Lawvere, F.W.: Continuously variable sets: Algebraic geometry = geometric logic. In: Rose, H.E., Shepherdson, J.C. (eds.) Logic Colloquium ‘73 (Bristol, 1973), pp. 135–156. North Holland, Amsterdam (1975) Google Scholar
  19. 19.
    Lawvere, F.W.: Variable quantities and variable structures in topoi. In: Heller, A., Tierney, M. (eds.) Algebra, Topology, and Category Theory. A Collection of Papers in Honor of Samuel Eilenberg, pp. 101–131. Academic Press, New York (1976) CrossRefGoogle Scholar
  20. 20.
    Lawvere, F.W.: Intrinsic co-Heyting boundaries and the Leibniz rule in certain toposes. In: Carboni, A., Pedicchio, M.C., Rosolini, G. (eds.) Proceedings of the 1990 Meeting on Category Theory held in Como, Italy, Lecture Notes in Mathematics, vol. 1488, pp. 279–281. Springer, Berlin (1991) Google Scholar
  21. 21.
    Lawvere, F.W., Rosebrugh, R.: Sets for Mathematics. Cambridge University Press, Cambridge (2003) CrossRefzbMATHGoogle Scholar
  22. 22.
    Lawvere, F.W., Schanuel, S.H.: Conceptual Mathematics. A First Introduction to Categories, second reprint. Cambridge University Press, Cambridge (2000) Google Scholar
  23. 23.
    Mac Lane, S., Moerdijk, I.: Sheaves in Geometry and Logic: A First Introduction to Topos Theory. Springer, New York (1992) CrossRefzbMATHGoogle Scholar
  24. 24.
    G. Malinowski. Q-consequence operation. Rep. Math. Log. 24, 49–59 (1990) zbMATHMathSciNetGoogle Scholar
  25. 25.
    Malinowski, G.: Towards the concept of logical many-valuedness. Folia Philos. 7, 7–103 (1990) Google Scholar
  26. 26.
    McLarty, C.: Elementary Categories, Elementary Toposes. Oxford Clarendon Press, Toronto (1995) zbMATHGoogle Scholar
  27. 27.
    McLarty, C.: Two constructivist aspects of category theory. Philos. Sci. 27 (Cahier spécial 6), 95–114 (2006) Google Scholar
  28. 28.
    Mortensen, C.: Inconsistent Mathematics. Kluwer Mathematics and Its Applications Series. Kluwer Academic Publishers, Dordrecht (1995) Google Scholar
  29. 29.
    Mortensen, C.: Closed set logic. In: Brady, R.T. (ed.) Relevant Logics and Their Rivals, vol. II, pp. 254–262. Ashgate Publishing, Aldershot (2003) Google Scholar
  30. 30.
    Reyes, G., Zawadowski, M.: Formal systems for modal operators on locales. Stud. Log. 52(4), 595–613 (1993) CrossRefzbMATHMathSciNetGoogle Scholar
  31. 31.
    Reyes, G., Zolfaghari, H.: Bi-Heyting algebras, toposes and modalities. J. Philos. Log. 25(1), 25–43 (1996) CrossRefzbMATHMathSciNetGoogle Scholar
  32. 32.
    Routley, R., Meyer, R.K.: Every sentential logic has a two-valued worlds semantics. Log. Anal. 19(74–76), 345–365 (1976) zbMATHMathSciNetGoogle Scholar
  33. 33.
    Scott, D.: Background to formalization. In: Leblanc, H. (ed.) Truth, Syntax and Modality, pp. 244–273. North Holland, Amsterdam (1973) CrossRefGoogle Scholar
  34. 34.
    Scott, D.: Completeness and axiomatizability in many-valued logics. In: Henkin, L., et al. (eds.) Proceedings of the Tarski Symposium, pp. 411–436. American Mathematical Society, USA (1974) CrossRefGoogle Scholar
  35. 35.
    Tsuji, M.: Many-valued logics and Suszko’s thesis revisited. Stud. Log. 60(2), 299–309 (1998) CrossRefzbMATHMathSciNetGoogle Scholar
  36. 36.
    van Inwagen, P.: Metaphysics, 3rd edn. Westview Press, Boulder, Colorado (2008) Google Scholar
  37. 37.
    Vasyukov, V.: Structuring the universe of universal logic. Log. Univers. 1(2), 277–294 (2007) CrossRefzbMATHMathSciNetGoogle Scholar
  38. 38.
    Vigna, S.: A guided tour in the topos of graphs. Technical Report 199–7, Università di Milano, Dipartimento di Scienze dell’Informazione (1997). Available at
  39. 39.
    Wansing, H., Shramko, Y.: Suszko’s thesis, inferential many-valuedness and the notion of logical system. Stud. Log. 88(1), 405–429 (2008). See also the erratum in vol. 89, p. 147 (2008) Google Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  1. 1.Instituto de Investigaciones FilosóficasUniversidad Nacional Autónoma de MéxicoMexico CityMexico

Personalised recommendations