Scaling Up Mixed Workloads: A Battle of Data Freshness, Flexibility, and Scheduling

  • Iraklis PsaroudakisEmail author
  • Florian WolfEmail author
  • Norman May
  • Thomas Neumann
  • Alexander Böhm
  • Anastasia Ailamaki
  • Kai-Uwe Sattler
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8904)


The common “one size does not fit all” paradigm isolates transactional and analytical workloads into separate, specialized database systems. Operational data is periodically replicated to a data warehouse for analytics. Competitiveness of enterprises today, however, depends on real-time reporting on operational data, necessitating an integration of transactional and analytical processing in a single database system. The mixed workload should be able to query and modify common data in a shared schema. The database needs to provide performance guarantees for transactional workloads, and, at the same time, efficiently evaluate complex analytical queries. In this paper, we share our analysis of the performance of two main-memory databases that support mixed workloads, SAP HANA and HyPer, while evaluating the mixed workload CH-benCHmark. By examining their similarities and differences, we identify the factors that affect performance while scaling the number of concurrent transactional and analytical clients. The three main factors are (a) data freshness, i.e., how recent is the data processed by analytical queries, (b) flexibility, i.e., restricting transactional features in order to increase optimization choices and enhance performance, and (c) scheduling, i.e., how the mixed workload utilizes resources. Specifically for scheduling, we show that the absence of workload management under cases of high concurrency leads to analytical workloads overwhelming the system and severely hurting the performance of transactional workloads.


OLAP OLTP CH-benCHmark SAP HANA HyPer Data freshness Flexibility Scheduling Workload management 


  1. 1.
    Sap, HANA Live for SAP Business Suite (2014).
  2. 2.
    Transaction processing performance council (2014).
  3. 3.
    Alagiannis, I., Idreos, S., Ailamaki, A.: H2O: a hands-free adaptive store. In: SIGMOD (2014)Google Scholar
  4. 4.
    Cao, T., Salles, M.A.V., Sowell, B., Yue, Y., Demers, A.J., Gehrke, J., White, W.M.: Fast checkpoint recovery algorithms for frequently consistent applications. In: SIGMOD (2011)Google Scholar
  5. 5.
    Cole, R., Funke, F., Giakoumakis, L., Guy, W., Kemper, A., Krompass, S., Kuno, H.A., Nambiar, R.O., Neumann, T., Poess, M., Sattler, K.U., Seibold, M., Simon, E., Waas, F.: The mixed workload CH-benCHmark. In: DBTest (2011)Google Scholar
  6. 6.
    Difallah, D.E., Pavlo, A., Curino, C., Cudré-Mauroux, P.: OLTP-Bench: an extensible testbed for benchmarking relational databases. PVLDB 7(4), 53–63 (2014)Google Scholar
  7. 7.
    Färber, F., May, N., Lehner, W., Große, P., Müller, I., Rauhe, H., Dees, J.: The SAP HANA database - an architecture overview. IEEE Data Eng. Bull. 35(1), 28–33 (2012)Google Scholar
  8. 8.
    Florescu, D., Kossmann, D.: Rethinking cost and performance of database systems. SIGMOD Rec. 38(1), 43–48 (2009)CrossRefGoogle Scholar
  9. 9.
    Grund, M., Krüger, J., Plattner, H., Zeier, A., Cudre-Mauroux, P., Madden, S.: HYRISE: a main memory hybrid storage engine. PVLDB 4(2), 105–116 (2010)Google Scholar
  10. 10.
    Kemper, A., Neumann, T.: HyPer: a hybrid OLTP&OLAP main memory database system based on virtual memory snapshots. In: ICDE (2011)Google Scholar
  11. 11.
    Lee, J., Kwon, Y.S., Färber, F., Muehle, M., Lee, C., Bensberg, C., Lee, J.Y., Lee, A.H., Lehner, W.: SAP HANA distributed in-memory database system: Transaction, session, and metadata management. In: ICDE (2013)Google Scholar
  12. 12.
    Leis, V., Boncz, P., Kemper, A., Neumann, T.: Morsel-driven parallelism: A NUMA-aware query evaluation framework for the many-core age. In: SIGMOD (2014, to appear)Google Scholar
  13. 13.
    Leis, V., Kemper, A., Neumann, T.: Exploiting hardware transactional memory in main-memory databases. In: ICDE (2014)Google Scholar
  14. 14.
    Neumann, T.: Efficiently compiling efficient query plans for modern hardware. In: VLDB (2011)Google Scholar
  15. 15.
    Nguyen, T.M., Schiefer, J., Tjoa, A.M.: Sense & response service architecture (saresa): an approach towards a real-time business intelligence solution and its use for a fraud detection application. In: Proceedings of the 8th ACM International Workshop on Data Warehousing and OLAP (2005)Google Scholar
  16. 16.
    Olofson, C., Morris, H.: Blending transactions and analytics in a single in-memory platform: key to the real-time enterprise. Techical report, IDC, February 2013.
  17. 17.
    Plattner, H.: A common database approach for OLTP and OLAP using an in-memory column database. In: SIGMOD (2009)Google Scholar
  18. 18.
    Psaroudakis, I., Scheuer, T., May, N., Ailamaki, A.: Task scheduling for highly concurrent analytical and transactional main-memory workloads. In: ADMS (2013)Google Scholar
  19. 19.
    Raman, V., Attaluri, G., Barber, R., Chainani, N., Kalmuk, D., Samy, V.K., Leenstra, J., Lightstone, S., Liu, S., Lohman, G.M., Malkemus, T., Mueller, R., Pandis, I., Schiefer, B., Sharpe, D., Sidle, R., Storm, A., Zhang, L.: DB2 with BLU acceleration: So much more than just a column store. In: VLDB (2013)Google Scholar
  20. 20.
    Stonebraker, M., Cetintemel, U.: “One Size Fits All": an idea whose time has come and gone. In: ICDE (2005)Google Scholar
  21. 21.
    Stonebraker, M., Weisberg, A.: The VoltDB main memory DBMS. IEEE Data Eng. Bull. 36(2), 21–27 (2013)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Iraklis Psaroudakis
    • 1
    • 3
    Email author
  • Florian Wolf
    • 1
    • 4
    Email author
  • Norman May
    • 1
  • Thomas Neumann
    • 2
  • Alexander Böhm
    • 1
  • Anastasia Ailamaki
    • 3
  • Kai-Uwe Sattler
    • 4
  1. 1.SAP SEWalldorfGermany
  2. 2.TU MunichMunichGermany
  3. 3.EPFLLausanneSwitzerland
  4. 4.TU IlmenauIlmenauGermany

Personalised recommendations