Ontological Analysis and Engineering Standards: An Initial Study of IFC

  • Stefano BorgoEmail author
  • Emilio M. Sanfilippo
  • Aleksandra Šojić
  • Walter Terkaj


There is an increasing interest in developing ontological versions of engineering standards. In general, this amounts to restating a given standard in some ontological language like OWL. We observe that without an ontological analysis of the standard, the conversion neither improves the clarity of the standard nor facilitates its coherent application. In this chapter we begin to study the Industry Foundation Classes (IFC), a standard providing an open vendor-independent file format and data model for data interoperability and exchange for Architecture/Engineering/Construction and Facility Management. We first look at IFC and at an existing OWL version of IFC; then, we highlight the implicit assumptions and we apply ontological analysis to discuss how to best grasp the type/occurrence distinction in IFC. The goal is to show what has been done in IFC and the contribution of ontological analysis to help increasing the correct understanding of a standard. With this approach, we reach a deeper understanding, which can guide the translation from the original language to OWL with increased conceptual clarity while ensuring both logical coherence and ontological soundness.


IFC Ontological analysis Type Occurrence Class Instance 



This research has been partially funded by MIUR under the Italian flagship project “Fabbrica del Futuro,” Subproject 2, research project “Product and Process Co-Evolution Management via Modular Pallet configuration” (PRO2EVO).


  1. Bader F, Calvanese D, McGuinnes DL, Nardi D, Patel-Schneider PF (eds) (2007) The description logic handbook. Theory, implementation and applications, 2nd edn. Cambridge University Press, CambridgeGoogle Scholar
  2. Barbau R, Krima S, Rachuri S, Narayanan A, Fiorentini X, Foufou S, Sriram RD (2012) OntoSTEP: enriching product model data using ontologies. Comput Aided Des 44(6):575–590CrossRefGoogle Scholar
  3. Bazjanac V, Crawley DB (1997) The implementation of industry foundation classes in simulation tools for the building industry. Lawrence Berkeley National Laboratory, Tech. Rep.Google Scholar
  4. Beetz J, van Leeuwen J, de Vries B (2005) An ontology web language notation of the industry foundation classes. In: 22nd CIB W78 conference on information technology in constructionGoogle Scholar
  5. Beetz J, Leeuwen J, Vries B (2009) IfcOwl: a case of transforming EXPRESS schemas into ontologies. Artif Intell Eng Design Anal Manuf 23:89–101CrossRefGoogle Scholar
  6. Borgo S (2007) How formal ontology can help civil engineers. In: Teller J, Lee J, Roussey C (eds) Ontologies for urban development. Studies in computational intelligence. Springer, New York, pp 37–45CrossRefGoogle Scholar
  7. Borgo S, Carrara M, Garbacz P, Vermaas PE (2011) A formalization of functions as operations on flows. J Comput Inf Sci Eng 11(3):031007 1–14Google Scholar
  8. Borgo S, Franssen M, Garbacz P, Kitamura Y, Mizoguchi R, Vermaas PE (2011) Technical artifact: an integrated perspective, in formal ontologies meet industry, FAIA 229. IOS Press, Amsterdam, pp 3–15Google Scholar
  9. Borgo S, Leitão P (2007) Foundations for a core ontology of manufacturing. In: Sharman R, Kishore R, Ramesh R (eds) Ontologies: a handbook of principles, concepts and applications in information systems. Integrated series in information systems, vol 14. Springer, New York, pp 751–776CrossRefGoogle Scholar
  10. Borgo S, Masolo C (2009) Foundational choices in DOLCE. In: Staab S, Studer R (eds) Handbook on ontologies. International handbooks on information systems, 2nd edn. Springer, Berlin, pp 361–381Google Scholar
  11. Borgo et al. (2014) Towards an Ontological Grounding of IFC, in Alexandre Rademaker and Vinay K. Chaudhri (Eds.), Proceedings of the 6th Workshop on Formal Ontologies meet Industry (FOMI), Rio de Janeiro, Brazil, September 22nd, 2014, CEUR Workshop Proceedings, 1333 Google Scholar
  12. Borgo S, Vieu L (2006) From physical artifacts to products. In: Proceedings of the second FOMI workshop, Trento (Italy)Google Scholar
  13. Borgo S, Vieu L (2009) Artifacts in formal ontology. In: Meijers A (ed) Handbook of the philosophy of the technological sciences, technology and engineering sciences, vol 9. Elsevier, London, pp 273–307CrossRefGoogle Scholar
  14. BuildingSMART International (2014) Industry foundation classes. IFC release candidate 4, 1999–2012. Available on: Accessed June 2014
  15. Colledani M, Terkaj W, Tolio T, Tomasella M (2008) Development of a conceptual reference framework to manage manufacturing knowledge related to products, processes and production systems. In: Bernard A, Tichkiewitch S (eds) Methods and tools for effective knowledge life-cycle-management. Springer, New York, pp 259–284CrossRefGoogle Scholar
  16. Colledani M, Terkaj W, Tolio T (2009) Product-process-system information formalization. In: Tolio T (ed) Design of flexible production systems. Springer, Berlin, pp 63–86CrossRefGoogle Scholar
  17. Colledani M, Pedrelli G, Terkaj W, Urgo M (2013) Integrated virtual platform for manufacturing systems design. Procedia CIRP 7:425–430CrossRefGoogle Scholar
  18. Gagliardo S, Giannini F, Monti M, Pedrielli G, Terkaj W, Sacco M, Ghellere M, Salamone F (2015) An ontology-based framework for sustainable factories. Comput Aided Des Appl 12(2):1–10Google Scholar
  19. Ghielmini G, Pedrazzoli P, Rovere D, Terkaj W, Bor CR, Dal Maso G, Milella F, Sacco M (2013) Virtual factory manager for semantic data handling. CIRP J Manuf Sci Technol 6(4):281–291CrossRefGoogle Scholar
  20. Giarratano JC, Riley G (1998) Expert systems, 3rd edn. PWS, BostonGoogle Scholar
  21. Gola A, Montusiewicz J, Świć A (2011) Computer aided FMS machine tools subsystem selection using the evolutionary system of multicriteria analysis. Appl Comput Sci 7(1):18–29Google Scholar
  22. Gola A, Świć A (2011) Computer-aided machine tool selection for focused flexibility manufacturing systems using economical criteria. Actual Probl Econ 124(10):383–389Google Scholar
  23. Gola A, Świć A, Kramar V (2011) A multiple-criteria approach to machine-tool selection for focused flexibility manufacturing systems. Manag Prod Eng Rev 2(4):21–32Google Scholar
  24. Gola A, Świć A (2014) Design of storage subsystem of flexible manufacturing system using the computer simulation method. Actual Probl Econ 142(4):312–318Google Scholar
  25. Grueninger M (2009) Using the PSL ontology. In: Staab S, Studer R (eds) Handbook on ontologies. Springer, Berlin/Heidelberg, pp 423–443CrossRefGoogle Scholar
  26. Guarino N, Welty C (2009) An overview of OntoClean. In: Staab S, Studer R (eds) Handbook on ontologies. Springer, Berlin/Heidelberg, pp 201–220CrossRefGoogle Scholar
  27. Hodges W (1983) Elementary predicate logic. In: Gabbay D, Guenthner F (eds) Handbook of philosophical logic, vol I. Dordrecht, Reidel, pp 1–131CrossRefGoogle Scholar
  28. Horridge M, Drummond N, Goodwin J, Rector AL, Stevens R, Wang H (2006) The manchester OWL syntax. In: OWLed, 216Google Scholar
  29. Horrocks I, Patel-Schneider PF, Boley H, Tabet S, Grosof B, Dean M (2004) SWRL: a semantic web rule language combining OWL and ruleML W3C member submissionGoogle Scholar
  30. International Organization for Standardization (ISO) (1994) Industrial automation systems and integration—product data representation and exchange. Part 1: overview and fundamental principles, ISO 10303-1:1994(e) Ed.Google Scholar
  31. Kadar B, Terkaj W, Sacco M (2013) Semantic virtual factory supporting interoperable modelling and evaluation of production systems. CIRP Ann Manuf Technol 62:443–446CrossRefGoogle Scholar
  32. Katranuschkov P, Gehre A, Scherer R (2003) An ontology framework to access IFC model data. J Inf Technol Constr 8:413–437Google Scholar
  33. Khemlani L (2014) The IFC building model: a look under the hood. AECbytes feature 2004. Available on: Accessed June 2014
  34. Kitamura Y, Kashiwase M, Fuse M, Mizoguchi R (2004) Deployment of an ontological framework of functional design knowledge. Adv Eng Inf 18(2):115–127CrossRefGoogle Scholar
  35. Knublauch H, Fergerson RW, Noy NF, Musen MA (2004) The Protégé OWL plugin: an open development environment for semantic web applications. In: The semantic web—ISWC 2004. Springer, pp 229–243Google Scholar
  36. Krima S, Barbau R, Fiorentini X, Sudarsan R, Sriram RD (2009) “OntoStep: OWL-DL Ontology for STEP. U.S. National Institute of Standards and Technology (NIST), Tech. rep.Google Scholar
  37. Laakso M, Kiviniemi A (2012) The IFC standard—a review of history, development, and standardization. J Inf Technol Constr (ITcon) 17:134–161Google Scholar
  38. Lima C, Fiès B, Silva C, Barresi S (2004) Setting up the open semantic infrastructure for the construction sector in Europe–the FUNSIEC Project. In: 5th European conference on product and process modelling in the building and construction industry, ECPPM 2004, pp 540Google Scholar
  39. Masolo C, Borgo S, Gangemi A, Guarino N, Oltramari A, Schneider L (2002) The wonderweb library of foundational ontologies. Deliverable 17, EU WonderWeb Project.
  40. Modoni G, Sacco M, Terkaj W (2014) A survey of RDF store solutions. In: Proceedings of 2014 international ICE conference on engineering, technology and innovation (ICE), Bergano, ItalyGoogle Scholar
  41. National Institute of Building Sciences (NIBS) (2007) United States National Building Information Modeling Standard, Version 1—Part 1: overview, principles and methodologies, NIBS, Tech. rep.Google Scholar
  42. Pauwels P, Van Deursen D, Verstraeten R, De Roo J, De Meyer R, Van de Walle R, Van Campenhout J (2011) A semantic rule checking environment for building performance checking. Autom Constr 20(5):506–518CrossRefGoogle Scholar
  43. Pauwels P, Van Deursen D (2012) IFC/RDF: adaptation, aggregation and enrichment. In: First international workshop on linked data in architecture and construction (LDAC 2012)Google Scholar
  44. Pouchard LC, Cutting-Decelle AF (2007) Ontologies and standard-based approaches to interoperability for concurrent engineering. In: Anumba CJ, Kamara JM, Cutting-Decelle A-F (eds) Concurrent engineering in construction projects. Taylor & Francis, London/New York, pp 118–160Google Scholar
  45. Sacco M, Dal Maso G, Milella F, Pedrazzoli P, Rovere D, Terkaj W (2011) Virtual factory manager. In: Shumaker R (ed) Virtual and mixed reality—systems and applications, lecture notes in computer science, vol 6774. Springer, Berlin/Heidelberg, pp 397–406Google Scholar
  46. Sanfilippo E, Borgo S, Masolo C (2014) States, events, activities: is there an ontology behind BPMN? In: International conference on formal ontology in information systems (FOIS 2014), FAIA. IOS Press, AmsterdamGoogle Scholar
  47. Schenck D, Wilson PR (1994) Information modeling the EXPRESS way. Oxford University Press, OxfordGoogle Scholar
  48. Schevers H, Drogenmuller R (2006) Converting the industry foundation classes to the web ontology language. In: First international conference on semantics, knowledge and grid (SKG)Google Scholar
  49. Smith B (1998) Basic concepts of formal ontology. In: Guarino N (ed) Proceedings of the first international conference FOIS 1998. IOS Press, Amsterdam, pp 19–28Google Scholar
  50. Smith B (2005) Against fantology. In: Marek JC, Reicher M (eds) Experiecen and analysis, HPT and OBV, pp 153–170Google Scholar
  51. Smith B, Ceusters W, Klagges B, Köhler J, Kumar A, Lomax J, Mungall C, Neuhaus F, Rector A, Rosse C (2005) Relations in biomedical ontologies. Genome Biol 6(5):R46CrossRefGoogle Scholar
  52. Smith B (2006) Against idiosyncrasy in ontology development. Front Artif Intell Appl 150:15–26Google Scholar
  53. Szykman S, Sriram RD, Regli WC (2001) The role of knowledge in next-generation product development systems. J Comput Inf Sci Eng 1:3–11CrossRefGoogle Scholar
  54. Terkaj W, Pedrelli G, Sacco M (2012) Virtual factory data model. In: Proceedings of the workshop on ontology and semantic web for manufacturing, Graz, Austria, 24–27 July, 2012, CEUR Workshop Proceedings, 886:29–43Google Scholar
  55. Terkaj W, Tolio T, Valente A (2009) Design of focused flexibility manufacturing systems (FFMSs). In: Tolio T (ed) Design of flexible production systems. Springer, New York, pp 137–190CrossRefGoogle Scholar
  56. Terkaj W, Tolio T, Valente A (2010) A stochastic programming approach to support the machine tool builder in designing focused flexibility manufacturing systems (FFMSs). Int J Manuf Res 5(2):199–229CrossRefGoogle Scholar
  57. Terkaj W, Urgo M (2012) Virtual factory data model to support performance evaluation of production systems. In: Proceedings of the workshop on ontology and semantic web for manufacturing, Graz, Austria, 24–27 July, 2012, CEUR Workshop Proceedings, 886:44–58Google Scholar
  58. Terkaj W, Urgo M (2014) Ontology-based modeling of production systems for design and performance evaluation. Proceedings of 12th IEEE International Conference on Industrial Informatics (INDIN), pp 748–753, 2014Google Scholar
  59. Thein V (2011) Industry foundation classes (IFC). BIM interoperability through a vendor-independent file format. A bentley white paper, bentley sustaining infrastructure, Tech. rep.Google Scholar
  60. Viganò GP, Greci L, Mottura S, Sacco M (2011) GIOVE virtual factory: a new viewer for a more immersive role of the user during factory design. In: Digital factory for human-oriented production systems. The integration of international research projects. Springer, London, pp 201–216Google Scholar
  61. West M (2011) Developing high quality data models. Morgan Kaufmann, San FranciscoGoogle Scholar
  62. W3C OWL Working Group (2014) OWL 2 Web Ontology Language Document Overview (second edition). Available on: Accessed June 2014
  63. Zhang L, Issa RR (2011) Development of Ifc-based construction industry ontology for information retrieval from IFC models. In: EG-ICE workshop, University of Twente, The Netherlands, July, 2011Google Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Stefano Borgo
    • 1
    Email author
  • Emilio M. Sanfilippo
    • 1
    • 2
  • Aleksandra Šojić
    • 2
  • Walter Terkaj
    • 2
  1. 1.Istituto di Scienze e Tecnologie della Cognizione (ISTC) CNRTrentoItaly
  2. 2.Istituto Tecnologie Industriali e Automazione (ITIA) CNRMilanoItaly

Personalised recommendations