In Vitro Tools for Quantifying Structure–Function Relationships in Cardiac Myocyte Cells and Tissues

  • Meghan B. Knight
  • Anna Grosberg
  • Megan L. McCain


The heart is a dynamic, electrically activated, chemically sensitive, mechanical pump with a regular rhythm that must operate without interruption for decades. The function of the heart is an emergent property of highly organized structures that span multiple spatial scales (Fig. 2.1). On the organ level, the heart is divided into four chambers. Two of these chambers, the ventricles, are thick-walled muscular chambers that are particularly constructed to work as pressure pumps and contract in a twisting manner to efficiently squeeze blood from the chamber. The walls of the ventricle comprise layers of two-dimensional sheets of laminar cardiac tissue. The tissue itself consists of highly aligned, elongated, cylindrical cardiac myocytes. Cardiac myocytes are spanned by parallel bundles of myofibrils, which consist of repeating sarcomere units. Sarcomeres are nanoscale structures composed of thick myosin filaments and thin actin filaments that slide past each other and shorten the sarcomere in response to an action potential. Because all sarcomeres within a cell are aligned, and all cells in a tissue are aligned, the amount of uniaxial force generated by the tissue as a whole is maximized due to its multi-scale organization. To achieve synchronous contraction, myocytes couple together via specialized cell–cell junctions, known as intercalated discs, which provide both mechanical adhesion and rapid electrical communication. Thus, the pumping function of the heart, which is multiple centimeters in diameter, is dependent on spatial organization that spans all the way down to the nanoscale. In this chapter, we will describe the role of the structure of single cardiac myocytes, cell–cell junctions, and multicellular tissues in the function of the healthy heart and how these structure–function relationships become disrupted in disease. We will focus on studies that have used in vitro tools to mimic different architectures observed in developing, healthy, and diseased hearts and make functional readouts in a controlled setting.
Fig. 2.1

The multi-scale structure of the heart. The function of the heart is dependent on its hierarchical architecture, which spans organ, tissue, cellular, and molecular levels


Cardiac Myocytes Cardiac Tissue Contractile Force Cell Junction Intercalate Disc 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Agarwal A, Farouz Y, Nesmith AP, Deravi LF, McCain ML, Parker KK (2013a) Micropatterning alginate substrates for in vitro cardiovascular muscle on a chip. Adv Funct Mater 23(30):3738–3746CrossRefGoogle Scholar
  2. Agarwal A, Goss JA, Cho A, McCain ML, Parker KK (2013b) Microfluidic heart on a chip for higher throughput pharmacological studies. Lab Chip 13(18):3599–3608PubMedCentralPubMedCrossRefGoogle Scholar
  3. Ahmad F, Seidman JG, Seidman CE (2005) The genetic basis for cardiac remodeling. Annu Rev Genomics Hum Genet 6:185–216PubMedCrossRefGoogle Scholar
  4. Amado LC, Saliaris AP, Schuleri KH, St. John M, Xie J-S, Cattaneo S, Durand DJ, Fitton T, Kuang JQ, Stewart G, Lehrke S, Baumgartner WW, Martin BJ, Heldman AW, Hare JM (2005) Cardiac repair with intramyocardial injection of allogeneic mesenchymal stem cells after myocardial infarction. Proc Natl Acad Sci U S A 102(32):11474–11479PubMedCentralPubMedCrossRefGoogle Scholar
  5. Angst BD, Khan LU, Severs NJ, Whitely K, Rothery S, Thompson RP, Magee AI, Gourdie RG (1997) Dissociated spatial patterning of gap junctions and cell adhesion junctions during postnatal differentiation of ventricular myocardium. Circ Res 80(1):88–94PubMedCrossRefGoogle Scholar
  6. Antz M, Otomo K, Arruda M, Scherlag BJ, Pitha J, Tondo C, Lazzara R, Jackman WM (1998) Electrical conduction between the right atrium and the left atrium via the musculature of the coronary sinus. Circulation 98(17):1790–1795PubMedCrossRefGoogle Scholar
  7. Anversa P, Kajstura J, Leri A, Bolli R (2006) Life and death of cardiac stem cells: a paradigm shift in cardiac biology. Circulation 113(11):1451–1463PubMedCrossRefGoogle Scholar
  8. Atherton BT, Meyer DM, Simpson DG (1986) Assembly and remodelling of myofibrils and intercalated discs in cultured neonatal rat heart cells. J Cell Sci 86:233–248PubMedGoogle Scholar
  9. Auman HJ, Coleman H, Riley HE, Olale F, Tsai HJ, Yelon D (2007) Functional modulation of cardiac form through regionally confined cell shape changes. PLoS Biol 5(3):e53PubMedCentralPubMedCrossRefGoogle Scholar
  10. Badrossamay MR, Balachandran K, Capulli AK, Golecki HM, Agarwal A, Goss JA, Kim H, Shin K, Parker KK (2014) Engineering hybrid polymer-protein super-aligned nanofibers via rotary jet spinning. Biomaterials 35(10):3188–3197PubMedCrossRefGoogle Scholar
  11. Baharvand H, Azarnia M, Parivar K, Ashtiani SK (2005) The effect of extracellular matrix on embryonic stem cell-derived cardiomyocytes. J Mol Cell Cardiol 38(3):495–503PubMedCrossRefGoogle Scholar
  12. Bajaj P, Tang X, Saif TA, Bashir R (2010) Stiffness of the substrate influences the phenotype of embryonic chicken cardiac myocytes. J Biomed Mater Res A 95(4):1261–1269PubMedCrossRefGoogle Scholar
  13. Beauchamp P, Choby C, Desplantez T, de Peyer K, Green K, Yamada KA, Weingart R, Saffitz JE, Kleber AG (2004) Electrical propagation in synthetic ventricular myocyte strands from germline connexin43 knockout mice. Circ Res 95(2):170–178PubMedCrossRefGoogle Scholar
  14. Beauchamp P, Desplantez T, McCain ML, Li W, Asimaki A, Rigoli G, Parker KK, Saffitz JE, Kleber AG (2012) Electrical coupling and propagation in engineered ventricular myocardium with heterogeneous expression of connexin43. Circ Res 110(11):1445–1453PubMedCentralPubMedCrossRefGoogle Scholar
  15. Beauchamp P, Yamada KA, Baertschi AJ, Green K, Kanter EM, Saffitz JE, Kleber AG (2006) Relative contributions of connexins 40 and 43 to atrial impulse propagation in synthetic strands of neonatal and fetal murine cardiomyocytes. Circ Res 99(11):1216–1224PubMedCrossRefGoogle Scholar
  16. Berk BC, Fujiwara K, Lehoux S (2007) ECM remodeling in hypertensive heart disease. J Clin Invest 117(3):568–575PubMedCentralPubMedCrossRefGoogle Scholar
  17. Berry MF, Engler AJ, Woo YJ, Pirolli TJ, Bish LT, Jayasankar V, Morine KJ, Gardner TJ, Discher DE, Sweeney HL (2006) Mesenchymal stem cell injection after myocardial infarction improves myocardial compliance. Am J Physiol Heart Circ Physiol 290(6):H2196–H2203PubMedCrossRefGoogle Scholar
  18. Boateng SY, Goldspink PH (2008) Assembly and maintenance of the sarcomere night and day. Cardiovasc Res 77(4):667–675PubMedCrossRefGoogle Scholar
  19. Borg TK, Gay RE, Johnson LD (1982) Changes in the distribution of fibronectin and collagen during development of the neonatal rat heart. Coll Relat Res 2(3):211–218PubMedCrossRefGoogle Scholar
  20. Boudou T, Legant WR, Mu A, Borochin MA, Thavandiran N, Radisic M, Zandstra PW, Epstein JA, Margulies KB, Chen CS (2012) A microfabricated platform to measure and manipulate the mechanics of engineered cardiac microtissues. Tissue Eng Part A 18(9–10):910–919PubMedCentralPubMedCrossRefGoogle Scholar
  21. Braam SR, Tertoolen L, van de Stolpe A, Meyer T, Passier R, Mummery CL (2010) Prediction of drug-induced cardiotoxicity using human embryonic stem cell-derived cardiomyocytes. Stem Cell Res 4(2):107–116PubMedCrossRefGoogle Scholar
  22. Bray MA, Sheehy SP, Parker KK (2008) Sarcomere alignment is regulated by myocyte shape. Cell Motil Cytoskeleton 65(8):641–651PubMedCrossRefGoogle Scholar
  23. Bullard TA, Borg TK, Price RL (2005) The expression and role of protein kinase C in neonatal cardiac myocyte attachment, cell volume, and myofibril formation is dependent on the composition of the extracellular matrix. Microsc Microanal 11(3):224–234PubMedCrossRefGoogle Scholar
  24. Bursac N, Aguel F, Tung L (2004) Multiarm spirals in a two-dimensional cardiac substrate. Proc Natl Acad Sci U S A 101(43):15530–15534PubMedCentralPubMedCrossRefGoogle Scholar
  25. Bursac N, Parker KK, Iravanian S, Tung L (2002) Cardiomyocyte cultures with controlled macroscopic anisotropy: a model for functional electrophysiological studies of cardiac muscle. Circ Res 91(12):e45–e54PubMedCrossRefGoogle Scholar
  26. Butler JP, Tolic-Norrelykke IM, Fabry B, Fredberg JJ (2002) Traction fields, moments, and strain energy that cells exert on their surroundings. Am J Physiol Cell Physiol 282(3):C595–C605PubMedCrossRefGoogle Scholar
  27. Cabo C, Yao J, Boyden PA, Chen S, Hussain W, Duffy HS, Ciaccio EJ, Peters NS, Wit AL (2006) Heterogeneous gap junction remodeling in reentrant circuits in the epicardial border zone of the healing canine infarct. Cardiovasc Res 72(2):241–249PubMedCrossRefGoogle Scholar
  28. Carey PA, Turner M, Fry CH, Sheridan DJ (2001) Reduced anisotropy of action potential conduction in left ventricular hypertrophy. J Cardiovasc Electrophysiol 12(7):830–835PubMedCrossRefGoogle Scholar
  29. Carver W, Price RL, Raso DS, Terracio L, Borg TK (1994) Distribution of beta-1 integrin in the developing rat heart. J Histochem Cytochem 42(2):167–175PubMedCrossRefGoogle Scholar
  30. Caspi O, Lesman A, Basevitch Y, Gepstein A, Arbel G, Habib I, Gepstein L, Levenberg S (2007) Tissue engineering of vascularized cardiac muscle from human embryonic stem cells. Circ Res 100(2):10CrossRefGoogle Scholar
  31. Chaturvedi RR, Herron T, Simmons R, Shore D, Kumar P, Sethia B, Chua F, Vassiliadis E, Kentish JC (2010) Passive stiffness of myocardium from congenital heart disease and implications for diastole. Circulation 121(8):979–988PubMedCrossRefGoogle Scholar
  32. Chen A, Lieu DK, Freschauf L, Lew V, Sharma H, Wang J, Nguyen D, Karakikes I, Hajjar RJ, Gopinathan A, Botvinick E, Fowlkes CC, Li RA, Khine M (2011) Shrink-film configurable multiscale wrinkles for functional alignment of human embryonic stem cells and their cardiac derivatives. Adv Mater 23(48):5785–5791PubMedCrossRefGoogle Scholar
  33. Chen CS, Mrksich M, Huang S, Whitesides GM, Ingber DE (1997) Geometric control of cell life and death. Science 276(5317):1425–1428PubMedCrossRefGoogle Scholar
  34. Chen CS, Tan J, Tien J (2004) Mechanotransduction at cell-matrix and cell-cell contacts. Annu Rev Biomed Eng 6:275–302PubMedCrossRefGoogle Scholar
  35. Chen J, Liu W, Zhang H, Lacy L, Yang X, Song S-K, Wickline SA, Yu X (2005) Regional ventricular wall thickening reflects changes in cardiac fiber and sheet structure during contraction: quantification with diffusion tensor MRI. Am J Physiol Heart Circ Physiol 289(5):H1898–H1907PubMedCrossRefGoogle Scholar
  36. Chong JJ, Yang X, Don CW, Minami E, Liu YW, Weyers JJ, Mahoney WM, Van Biber B, Cook SM, Palpant NJ, Gantz JA, Fugate JA, Muskheli V, Gough GM, Vogel KW, Astley CA, Hotchkiss CE, Baldessari A, Pabon L, Reinecke H, Gill EA, Nelson V, Kiem HP, Laflamme MA, Murry CE (2014) Human embryonic-stem-cell-derived cardiomyocytes regenerate non-human primate hearts. Nature 510(7504):273–277PubMedCentralPubMedCrossRefGoogle Scholar
  37. Chung CY, Bien H, Sobie EA, Dasari V, McKinnon D, Rosati B, Entcheva E (2011) Hypertrophic phenotype in cardiac cell assemblies solely by structural cues and ensuing self-organization. FASEB J 25(3):851–862PubMedCentralPubMedCrossRefGoogle Scholar
  38. Corda S, Samuel JL, Rappaport L (2000) Extracellular matrix and growth factors during heart growth. Heart Fail Rev 5(2):119–130PubMedCrossRefGoogle Scholar
  39. Dabiri GA, Turnacioglu KK, Sanger JM, Sanger JW (1997) Myofibrillogenesis visualized in living embryonic cardiomyocytes. Proc Natl Acad Sci U S A 94(17):9493–9498PubMedCentralPubMedCrossRefGoogle Scholar
  40. Desplantez T, McCain ML, Beauchamp P, Rigoli G, Rothen-Rutishauser B, Parker KK, Kleber AG (2012) Connexin43 ablation in foetal atrial myocytes decreases electrical coupling, partner connexins, and sodium current. Cardiovasc Res 94(1):58–65PubMedCentralPubMedCrossRefGoogle Scholar
  41. Doering CW, Jalil JE, Janicki JS, Pick R, Aghili S, Abrahams C, Weber KT (1988) Collagen network remodelling and diastolic stiffness of the rat left ventricle with pressure overload hypertrophy. Cardiovasc Res 22(10):686–695PubMedCrossRefGoogle Scholar
  42. Domian IJ, Chiravuri M, van der Meer P, Feinberg AW, Shi X, Shao Y, Wu SM, Parker KK, Chien KR (2009) Generation of functional ventricular heart muscle from mouse ventricular progenitor cells. Science 326(5951):426–429PubMedCentralPubMedCrossRefGoogle Scholar
  43. Du A, Sanger JM, Linask KK, Sanger JW (2003) Myofibrillogenesis in the first cardiomyocytes formed from isolated quail precardiac mesoderm. Dev Biol 257(2):382–394PubMedCrossRefGoogle Scholar
  44. Du A, Sanger JM, Sanger JW (2008) Cardiac myofibrillogenesis inside intact embryonic hearts. Dev Biol 318(2):236–246PubMedCentralPubMedCrossRefGoogle Scholar
  45. Duan Y, Liu Z, O’Neill J, Wan LQ, Freytes DO, Vunjak-Novakovic G (2011) Hybrid gel composed of native heart matrix and collagen induces cardiac differentiation of human embryonic stem cells without supplemental growth factors. J Cardiovasc Transl Res 4(5):605–615PubMedCentralPubMedCrossRefGoogle Scholar
  46. Dupont E, Matsushita T, Kaba RA, Vozzi C, Coppen SR, Khan N, Kaprielian R, Yacoub MH, Severs NJ (2001) Altered connexin expression in human congestive heart failure. J Mol Cell Cardiol 33(2):359–371PubMedCrossRefGoogle Scholar
  47. Efimov IR, Nikolski VP, Salama G (2004) Optical imaging of the heart. Circ Res 95(1):21–33PubMedCrossRefGoogle Scholar
  48. Ehler E, Rothen BM, Hammerle SP, Komiyama M, Perriard JC (1999) Myofibrillogenesis in the developing chicken heart: assembly of Z-disk, M-line and the thick filaments. J Cell Sci 112(Pt 10):1529–1539PubMedGoogle Scholar
  49. Engler AJ, Carag-Krieger C, Johnson CP, Raab M, Tang HY, Speicher DW, Sanger JW, Sanger JM, Discher DE (2008) Embryonic cardiomyocytes beat best on a matrix with heart-like elasticity: scar-like rigidity inhibits beating. J Cell Sci 121(Pt 22):3794–3802PubMedCentralPubMedCrossRefGoogle Scholar
  50. Farhadian F, Contard F, Corbier A, Barrieux A, Rappaport L, Samuel JL (1995) Fibronectin expression during physiological and pathological cardiac growth. J Mol Cell Cardiol 27(4):981–990PubMedCrossRefGoogle Scholar
  51. Fast VG, Darrow BJ, Saffitz JE, Kleber AG (1996) Anisotropic activation spread in heart cell monolayers assessed by high-resolution optical mapping. Role of tissue discontinuities. Circ Res 79(1):115–127PubMedCrossRefGoogle Scholar
  52. Fast VG, Kleber AG (1993) Microscopic conduction in cultured strands of neonatal rat heart cells measured with voltage-sensitive dyes. Circ Res 73(5):914–925PubMedCrossRefGoogle Scholar
  53. Fausto N (2004) Liver regeneration and repair: hepatocytes, progenitor cells, and stem cells. Hepatology 39(6):1477–1487PubMedCrossRefGoogle Scholar
  54. Feher JJ (2012) Quantitative human physiology: an introduction. Elsevier/Academic Press, LondonGoogle Scholar
  55. Feild BJ, Baxley WA, Russell RO Jr, Hood WP Jr, Holt JH, Dowling JT, Rackley CE (1973) Left ventricular function and hypertrophy in cardiomyopathy with depressed ejection fraction. Circulation 47(5):1022–1031PubMedCrossRefGoogle Scholar
  56. Feinberg AW, Alford PW, Jin H, Ripplinger CM, Werdich AA, Sheehy SP, Grosberg A, Parker KK (2012) Controlling the contractile strength of engineered cardiac muscle by hierarchal tissue architecture. Biomaterials 33(23):5732–5741PubMedCentralPubMedCrossRefGoogle Scholar
  57. Feinberg AW, Feigel A, Shevkoplyas SS, Sheehy S, Whitesides GM, Parker KK (2007) Muscular thin films for building actuators and powering devices. Science 317(5843):1366–1370PubMedCrossRefGoogle Scholar
  58. Feinberg AW, Ripplinger CM, van der Meer P, Sheehy SP, Domian I, Chien KR, Parker KK (2013) Functional differences in engineered myocardium from embryonic stem cell-derived versus neonatal cardiomyocytes. Stem Cell Rep 1(5):387–396CrossRefGoogle Scholar
  59. Ferri N, Siegl P, Corsini A, Herrmann J, Lerman A, Benghozi R (2013) Drug attrition during pre-clinical and clinical development: understanding and managing drug-induced cardiotoxicity. Pharmacol Ther 138(3):470–484PubMedCrossRefGoogle Scholar
  60. Forte G, Pagliari S, Ebara M, Uto K, Tam JK, Romanazzo S, Escobedo-Lucea C, Romano E, Di Nardo P, Traversa E, Aoyagi T (2012) Substrate stiffness modulates gene expression and phenotype in neonatal cardiomyocytes in vitro. Tissue Eng Part A 18(17–18):1837–1848PubMedCrossRefGoogle Scholar
  61. Galie PA, Khalid N, Carnahan KE, Westfall MV, Stegemann JP (2013) Substrate stiffness affects sarcomere and costamere structure and electrophysiological function of isolated adult cardiomyocytes. Cardiovasc Pathol 22(3):219–227PubMedCentralPubMedCrossRefGoogle Scholar
  62. Geisler SB, Green KJ, Isom LL, Meshinchi S, Martens JR, Delmar M, Russell MW (2010) Ordered assembly of the adhesive and electrochemical connections within newly formed intercalated disks in primary cultures of adult rat cardiomyocytes. J Biomed Biotechnol 2010:624719PubMedCentralPubMedCrossRefGoogle Scholar
  63. Geisse NA, Sheehy SP, Parker KK (2009) Control of myocyte remodeling in vitro with engineered substrates. In Vitro Cell Dev Biol Anim 45(7):343–350PubMedCrossRefGoogle Scholar
  64. Gerdes AM (1992) Remodeling of ventricular myocytes during cardiac hypertrophy and heart failure. J Fla Med Assoc 79(4):253–255PubMedGoogle Scholar
  65. Gerdes AM (2002) Cardiac myocyte remodeling in hypertrophy and progression to failure. J Card Fail 8(6 Suppl):S264–S268PubMedCrossRefGoogle Scholar
  66. Grosberg A, Alford PW, McCain ML, Parker KK (2011a) Ensembles of engineered cardiac tissues for physiological and pharmacological study: heart on a chip. Lab Chip 11(24):4165–4173PubMedCentralPubMedCrossRefGoogle Scholar
  67. Grosberg A, Kuo PL, Guo CL, Geisse NA, Bray MA, Adams WJ, Sheehy SP, Parker KK (2011b) Self-organization of muscle cell structure and function. PLoS Comput Biol 7(2):e1001088PubMedCentralPubMedCrossRefGoogle Scholar
  68. Grosberg A, Nesmith AP, Goss JA, Brigham MD, McCain ML, Parker KK (2012) Muscle on a chip: in vitro contractility assays for smooth and striated muscle. J Pharmacol Toxicol Methods 65(3):126–135PubMedCentralPubMedCrossRefGoogle Scholar
  69. Grossman W, Jones D, McLaurin LP (1975) Wall stress and patterns of hypertrophy in the human left ventricle. J Clin Invest 56(1):56–64PubMedCentralPubMedCrossRefGoogle Scholar
  70. Guyton AC, Hall JE (2000) Textbook of medical physiology, 10th edn. W.B. Saunders Company, New YorkGoogle Scholar
  71. Helm PA, Younes L, Beg MF, Ennis DB, Leclercq C, Faris OP, McVeigh E, Kass D, Miller MI, Winslow RL (2006) Evidence of structural remodeling in the dyssynchronous failing heart. Circ Res 98(1):125–132PubMedCrossRefGoogle Scholar
  72. Herberts C, Kwa M, Hermsen H (2011) Risk factors in the development of stem cell therapy. J Transl Med 9(1):29PubMedCentralPubMedCrossRefGoogle Scholar
  73. Hertig CM, Butz S, Koch S, Eppenberger-Eberhardt M, Kemler R, Eppenberger HM (1996) N-cadherin in adult rat cardiomyocytes in culture. II. Spatio-temporal appearance of proteins involved in cell-cell contact and communication. Formation of two distinct N-cadherin/catenin complexes. J Cell Sci 109(Pt 1):11–20PubMedGoogle Scholar
  74. Hilenski LL, Terracio L, Borg TK (1991) Myofibrillar and cytoskeletal assembly in neonatal rat cardiac myocytes cultured on laminin and collagen. Cell Tissue Res 264(3):577–587PubMedCrossRefGoogle Scholar
  75. Hirschy A, Schatzmann F, Ehler E, Perriard JC (2006) Establishment of cardiac cytoarchitecture in the developing mouse heart. Dev Biol 289(2):430–441PubMedCrossRefGoogle Scholar
  76. Ho C (2009) Hypertrophic cardiomyopathy: preclinical and early phenotype. J Cardiovasc Transl Res 2(4):462–470PubMedCrossRefGoogle Scholar
  77. Ho CY, Lopez B, Coelho-Filho OR, Lakdawala NK, Cirino AL, Jarolim P, Kwong R, Gonzalez A, Colan SD, Seidman JG, Diez J, Seidman CE (2010) Myocardial fibrosis as an early manifestation of hypertrophic cardiomyopathy. N Engl J Med 363(6):552–563PubMedCentralPubMedCrossRefGoogle Scholar
  78. Hornberger LK, Singhroy S, Cavalle-Garrido T, Tsang W, Keeley F, Rabinovitch M (2000) Synthesis of extracellular matrix and adhesion through beta(1) integrins are critical for fetal ventricular myocyte proliferation. Circ Res 87(6):508–515PubMedCrossRefGoogle Scholar
  79. Hove JR, Koster RW, Forouhar AS, Acevedo-Bolton G, Fraser SE, Gharib M (2003) Intracardiac fluid forces are an essential epigenetic factor for embryonic cardiogenesis. Nature 421(6919):172–177PubMedCrossRefGoogle Scholar
  80. Hucker WJ, Nikolski VP, Efimov IR (2005) Optical mapping of the atrioventricular junction. J Electrocardiol 38(4 Suppl):121–125PubMedCrossRefGoogle Scholar
  81. Humphrey JD (2010) Cardiovascular solid mechanics: cells, tissues, and organs. Springer New York, NYGoogle Scholar
  82. Humphries MJ (2000) Integrin structure. Biochem Soc Trans 28(4):311–339PubMedCrossRefGoogle Scholar
  83. Jacot JG, McCulloch AD, Omens JH (2008) Substrate stiffness affects the functional maturation of neonatal rat ventricular myocytes. Biophys J 95(7):3479–3487PubMedCentralPubMedCrossRefGoogle Scholar
  84. Jane-Lise S, Corda S, Chassagne C, Rappaport L (2000) The extracellular matrix and the cytoskeleton in heart hypertrophy and failure. Heart Fail Rev 5(3):239–250PubMedCrossRefGoogle Scholar
  85. Kanter HL, Saffitz JE, Beyer EC (1992) Cardiac myocytes express multiple gap junction proteins. Circ Res 70(2):438–444PubMedCrossRefGoogle Scholar
  86. Kim C, Wong J, Wen J, Wang S, Wang C, Spiering S, Kan NG, Forcales S, Puri PL, Leone TC, Marine JE, Calkins H, Kelly DP, Judge DP, Chen HS (2013) Studying arrhythmogenic right ventricular dysplasia with patient-specific iPSCs. Nature 494(7435):105–110PubMedCentralPubMedCrossRefGoogle Scholar
  87. Kim DH, Lipke EA, Kim P, Cheong R, Thompson S, Delannoy M, Suh KY, Tung L, Levchenko A (2010) Nanoscale cues regulate the structure and function of macroscopic cardiac tissue constructs. Proc Natl Acad Sci U S A 107(2):565–570PubMedCentralPubMedCrossRefGoogle Scholar
  88. Kim JH, Asthagiri AR (2011) Matrix stiffening sensitizes epithelial cells to EGF and enables the loss of contact inhibition of proliferation. J Cell Sci 124(Pt 8):1280–1287PubMedCentralPubMedCrossRefGoogle Scholar
  89. Konstandin MH, Toko H, Gastelum GM, Quijada P, De La Torre A, Quintana M, Collins B, Din S, Avitabile D, Volkers M, Gude N, Fassler R, Sussman MA (2013) Fibronectin is essential for reparative cardiac progenitor cell response after myocardial infarction. Circ Res 113(2):115–125PubMedCrossRefGoogle Scholar
  90. Kostin S, Hein S, Bauer EP, Schaper J (1999) Spatiotemporal development and distribution of intercellular junctions in adult rat cardiomyocytes in culture. Circ Res 85(2):154–167PubMedCrossRefGoogle Scholar
  91. Kostin S, Rieger M, Dammer S, Hein S, Richter M, Klovekorn WP, Bauer EP, Schaper J (2003) Gap junction remodeling and altered connexin43 expression in the failing human heart. Mol Cell Biochem 242(1–2):135–144PubMedCrossRefGoogle Scholar
  92. Kuo PL, Lee H, Bray MA, Geisse NA, Huang YT, Adams WJ, Sheehy SP, Parker KK (2012) Myocyte shape regulates lateral registry of sarcomeres and contractility. Am J Pathol 181(6):2030–2037PubMedCentralPubMedCrossRefGoogle Scholar
  93. Li J, Patel VV, Radice GL (2006) Dysregulation of cell adhesion proteins and cardiac arrhythmogenesis. Clin Med Res 4(1):42–52PubMedCentralPubMedCrossRefGoogle Scholar
  94. Liu Z, Tan JL, Cohen DM, Yang MT, Sniadecki NJ, Ruiz SA, Nelson CM, Chen CS (2010) Mechanical tugging force regulates the size of cell-cell junctions. Proc Natl Acad Sci U S A 107(22):9944–9949PubMedCentralPubMedCrossRefGoogle Scholar
  95. Lu TY, Lin B, Kim J, Sullivan M, Tobita K, Salama G, Yang L (2013) Repopulation of decellularized mouse heart with human induced pluripotent stem cell-derived cardiovascular progenitor cells. Nat Commun 4:2307PubMedGoogle Scholar
  96. Lundgren E, Terracio L, Mardh S, Borg TK (1985) Extracellular matrix components influence the survival of adult cardiac myocytes in vitro. Exp Cell Res 158(2):371–381PubMedCrossRefGoogle Scholar
  97. Lundy SD, Zhu WZ, Regnier M, Laflamme MA (2013) Structural and functional maturation of cardiomyocytes derived from human pluripotent stem cells. Stem Cells Dev 22(14):1991–2002PubMedCentralPubMedCrossRefGoogle Scholar
  98. Majkut S, Idema T, Swift J, Krieger C, Liu A, Discher DE (2013) Heart-specific stiffening in early embryos parallels matrix and myosin expression to optimize beating. Curr Biol 23(23):2434–2439PubMedCentralPubMedCrossRefGoogle Scholar
  99. Maruthamuthu V, Sabass B, Schwarz US, Gardel ML (2011) Cell-ECM traction force modulates endogenous tension at cell-cell contacts. Proc Natl Acad Sci U S A 108(12):4708–4713PubMedCentralPubMedCrossRefGoogle Scholar
  100. Matsuda T, Takahashi K, Nariai T, Ito T, Takatani T, Fujio Y, Azuma J (2004) N-cadherin-mediated cell adhesion determines the plasticity for cell alignment in response to mechanical stretch in cultured cardiomyocytes. Biochem Biophys Res Commun 326(1):228–232CrossRefGoogle Scholar
  101. Matsushita T, Oyamada M, Fujimoto K, Yasuda Y, Masuda S, Wada Y, Oka T, Takamatsu T (1999) Remodeling of cell-cell and cell-extracellular matrix interactions at the border zone of rat myocardial infarcts. Circ Res 85(11):1046–1055PubMedCrossRefGoogle Scholar
  102. McCain ML, Agarwal A, Nesmith HW, Nesmith AP, Parker KK (2014a) Micromolded gelatin hydrogels for extended culture of engineered cardiac tissues. Biomaterials 35(21):5462–5471PubMedCrossRefGoogle Scholar
  103. McCain ML, Desplantez T, Geisse NA, Rothen-Rutishauser B, Oberer H, Parker KK, Kleber AG (2012a) Cell-to-cell coupling in engineered pairs of rat ventricular cardiomyocytes: relation between Cx43 immunofluorescence and intercellular electrical conductance. Am J Physiol Heart Circ Physiol 302(2):H443–H450PubMedCentralPubMedCrossRefGoogle Scholar
  104. McCain ML, Desplantez T, Kleber AG (2014b) Engineering cardiac cell junctions in vitro to study the intercalated disc. Cell Commun Adhes 21(3):181–191PubMedCrossRefGoogle Scholar
  105. McCain ML, Lee H, Aratyn-Schaus Y, Kleber AG, Parker KK (2012b) Cooperative coupling of cell-matrix and cell-cell adhesions in cardiac muscle. Proc Natl Acad Sci U S A 109(25):9881–9886PubMedCentralPubMedCrossRefGoogle Scholar
  106. McCain ML, Sheehy S, Grosberg A, Goss JA, Parker KK (2013) Recapitulating maladaptive, mulitscale remodeling of failing myocardium on a chip. Proc Natl Acad Sci U S A 110(24):6CrossRefGoogle Scholar
  107. McCain ML, Yuan H, Pasqualini FS, Campbell PH, Parker KK (2014c) Matrix elasticity regulates the optimal cardiac myocyte shape for contractility. Am J Physiol Heart Circ Physiol 306(11):H1525–H1539PubMedCrossRefGoogle Scholar
  108. Mirica SN, Ordodi V, Apostol A, Ana D, Răducan A, Duicu O, Hâncu M, Ivan V, Muntean D (2009) Langendorff perfused heart – the 110 years old experimental model that gets better with age. Studia Universitatis Vasile Goldis Seria Stiintele Vietii (Life Sciences Series) 19(1):81–86Google Scholar
  109. Mollova M, Bersell K, Walsh S, Savla J, Das LT, Park SY, Silberstein LE, Dos Remedios CG, Graham D, Colan S, Kuhn B (2013) Cardiomyocyte proliferation contributes to heart growth in young humans. Proc Natl Acad Sci U S A 110(4):1446–1451PubMedCentralPubMedCrossRefGoogle Scholar
  110. Morley GE, Vaidya D, Samie FH, Lo C, Delmar M, Jalife J (1999) Characterization of conduction in the ventricles of normal and heterozygous Cx43 knockout mice using optical mapping. J Cardiovasc Electrophysiol 10(10):1361–1375PubMedCrossRefGoogle Scholar
  111. Nawata J, Ohno I, Isoyama S, Suzuki J, Miura S, Ikeda J, Shirato K (1999) Differential expression of alpha 1, alpha 3 and alpha 5 integrin subunits in acute and chronic stages of myocardial infarction in rats. Cardiovasc Res 43(2):371–381PubMedCrossRefGoogle Scholar
  112. Noorman M, van der Heyden MA, van Veen TA, Cox MG, Hauer RN, de Bakker JM, van Rijen HV (2009) Cardiac cell-cell junctions in health and disease: electrical versus mechanical coupling. J Mol Cell Cardiol 47(1):23–31PubMedCrossRefGoogle Scholar
  113. Ott HC, Matthiesen TS, Goh S-K, Black LD, Kren SM, Netoff TI, Taylor DA (2008) Perfusion-decellularized matrix: using nature’s platform to engineer a bioartificial heart. Nat Med 14(2):9CrossRefGoogle Scholar
  114. Parker KK, Ingber DE (2007) Extracellular matrix, mechanotransduction and structural hierarchies in heart tissue engineering. Philos Trans R Soc Lond B Biol Sci 362(1484):1267–1279PubMedCentralPubMedCrossRefGoogle Scholar
  115. Pedrotty DM, Klinger RY, Badie N, Hinds S, Kardashian A, Bursac N (2008) Structural coupling of cardiomyocytes and noncardiomyocytes: quantitative comparisons using a novel micropatterned cell pair assay. Am J Physiol Heart Circ Physiol 295(1):H390–H400PubMedCentralPubMedCrossRefGoogle Scholar
  116. Radisic M, Marsano A, Maidhof R, Wang Y, Vunjak-Novakovic G (2008) Cardiac tissue engineering using perfusion bioreactor systems. Nat Protoc 3(4):719–738PubMedCentralPubMedCrossRefGoogle Scholar
  117. Radisic M, Park H, Shing H, Consi T, Schoen FJ, Langer R, Freed LE, Vunjak-Novakovic G (2004) Functional assembly of engineered myocardium by electrical stimulation of cardiac myocytes cultured on scaffolds. Proc Natl Acad Sci U S A 101(52):18129–18134PubMedCentralPubMedCrossRefGoogle Scholar
  118. Rhee D, Sanger JM, Sanger JW (1994) The premyofibril: evidence for its role in myofibrillogenesis. Cell Motil Cytoskeleton 28(1):1–24PubMedCrossRefGoogle Scholar
  119. Robertson C, Tran DD, George SC (2013) Concise review: maturation phases of human pluripotent stem cell-derived cardiomyocytes. Stem Cells 31(5):829–837PubMedCrossRefGoogle Scholar
  120. Robey TE, Saiget MK, Reinecke H, Murry CE (2008) Systems approaches to preventing transplanted cell death in cardiac repair. J Mol Cell Cardiol 45(4):567–581PubMedCentralPubMedCrossRefGoogle Scholar
  121. Ross RS, Borg TK (2001) Integrins and the myocardium. Circ Res 88(11):1112–1119PubMedCrossRefGoogle Scholar
  122. Salameh A, Wustmann A, Karl S, Blanke K, Apel D, Rojas-Gomez D, Franke H, Mohr FW, Janousek J, Dhein S (2010) Cyclic mechanical stretch induces cardiomyocyte orientation and polarization of the gap junction protein connexin43. Circ Res 106(10):1592–1602PubMedCrossRefGoogle Scholar
  123. Samuel JL, Farhadian F, Sabri A, Marotte F, Robert V, Rappaport L (1994) Expression of fibronectin during rat fetal and postnatal development: an in situ hybridisation and immunohistochemical study. Cardiovasc Res 28(11):1653–1661PubMedCrossRefGoogle Scholar
  124. Sanger JM, Mittal B, Pochapin MB, Sanger JW (1986) Myofibrillogenesis in living cells microinjected with fluorescently labeled alpha-actinin. J Cell Biol 102(6):2053–2066PubMedCrossRefGoogle Scholar
  125. Severs NJ (2002) Gap junction remodeling in heart failure. J Card Fail 8(6 Suppl):S293–S299PubMedCrossRefGoogle Scholar
  126. Severs NJ, Dupont E, Thomas N, Kaba R, Rothery S, Jain R, Sharpey K, Fry CH (2006) Alterations in cardiac connexin expression in cardiomyopathies. Adv Cardiol 42:228–242PubMedCrossRefGoogle Scholar
  127. Sharp WW, Terracio L, Borg TK, Samarel AM (1993) Contractile activity modulates actin synthesis and turnover in cultured neonatal rat heart cells. Circ Res 73(1):172–183PubMedCrossRefGoogle Scholar
  128. Sheehy S, Francesco P, Grosberg A, Park SJ, Aratyn-Schaus Y, Parker KK (2014a) Quality metrics for stem cell-derived cardiac myocytes. Nat Biotechnol 2(3):282–294Google Scholar
  129. Sheehy SP, Pasqualini F, Grosberg A, Park SJ, Aratyn-Schaus Y, Parker KK (2014b) Quality metrics for stem cell-derived cardiac myocytes. Stem Cell Rep 2(3):282–294CrossRefGoogle Scholar
  130. Simpson DG, Decker ML, Clark WA, Decker RS (1993) Contractile activity and cell-cell contact regulate myofibrillar organization in cultured cardiac myocytes. J Cell Biol 123(2):323–336PubMedCrossRefGoogle Scholar
  131. Simpson DG, Sharp WW, Borg TK, Price RL, Terracio L, Samarel AM (1996) Mechanical regulation of cardiac myocyte protein turnover and myofibrillar structure. Am J Physiol 270(4 Pt 1):C1075–C1087PubMedGoogle Scholar
  132. Sirenko O, Crittenden C, Callamaras N, Hesley J, Chen YW, Funes C, Rusyn I, Anson B, Cromwell EF (2013) Multiparameter in vitro assessment of compound effects on cardiomyocyte physiology using iPSC cells. J Biomol Screen 18(1):39–53PubMedCrossRefGoogle Scholar
  133. Spach MS, Heidlage JF, Barr RC, Dolber PC (2004) Cell size and communication: role in structural and electrical development and remodeling of the heart. Heart Rhythm 1(4):500–515PubMedCrossRefGoogle Scholar
  134. Sreejit P, Verma RS (2013) Enhanced cardiomyogenic lineage differentiation of adult bone-marrow-derived stem cells grown on cardiogel. Cell Tissue Res 353(3):443–456PubMedCrossRefGoogle Scholar
  135. Stewart JA Jr, Gardner JD, Brower GL, Janicki JS (2014) Temporal changes in integrin-mediated cardiomyocyte adhesion secondary to chronic cardiac volume overload in rats. Am J Physiol Heart Circ Physiol 306(1):H101–H108PubMedCentralPubMedCrossRefGoogle Scholar
  136. Tan JL, Liu W, Nelson CM, Raghavan S, Chen CS (2004) Simple approach to micropattern cells on common culture substrates by tuning substrate wettability. Tissue Eng 10(5–6):865–872PubMedCrossRefGoogle Scholar
  137. Terracio L, Rubin K, Gullberg D, Balog E, Carver W, Jyring R, Borg TK (1991) Expression of collagen binding integrins during cardiac development and hypertrophy. Circ Res 68(3):734–744PubMedCrossRefGoogle Scholar
  138. Thavandiran N, Dubois N, Mikryukov A, Masse S, Beca B, Simmons CA, Deshpande VS, McGarry JP, Chen CS, Nanthakumar K, Keller GM, Radisic M, Zandstra PW (2013) Design and formulation of functional pluripotent stem cell-derived cardiac microtissues. Proc Natl Acad Sci U S A 110(49):19CrossRefGoogle Scholar
  139. Ulrich MM, Janssen AM, Daemen MJ, Rappaport L, Samuel JL, Contard F, Smits JF, Cleutjens JP (1997) Increased expression of fibronectin isoforms after myocardial infarction in rats. J Mol Cell Cardiol 29(9):2533–2543PubMedCrossRefGoogle Scholar
  140. Van Rijen HV, Wilders R, Van Ginneken AC, Jongsma HJ (1998) Quantitative analysis of dual whole-cell voltage-clamp determination of gap junctional conductance. Pflugers Arch 436(1):141–151PubMedCrossRefGoogle Scholar
  141. van Spreeuwel AC, Bax NA, Bastiaens AJ, Foolen J, Loerakker S, Borochin M, van der Schaft DW, Chen CS, Baaijens FP, Bouten CV (2014) The influence of matrix (an)isotropy on cardiomyocyte contraction in engineered cardiac microtissues. Integr Biol 6(4):422–429CrossRefGoogle Scholar
  142. van Veen AA, van Rijen HV, Opthof T (2001) Cardiac gap junction channels: modulation of expression and channel properties. Cardiovasc Res 51(2):217–229PubMedCrossRefGoogle Scholar
  143. Vozzi C, Dupont E, Coppen SR, Yeh HI, Severs NJ (1999) Chamber-related differences in connexin expression in the human heart. J Mol Cell Cardiol 31(5):991–1003PubMedCrossRefGoogle Scholar
  144. Wackers FJT, Berger HJ, Johnstone DE, Goldman L, Reduto LA, Langou RA, Gottschalk A, Zaret BL, Quartararo L, Pytlik L (1979) Multiple gated cardiac blood pool imaging for left ventricular ejection fraction: validation of the technique and assessment of variability. Am J Cardiol 43(6):1159–1166PubMedCrossRefGoogle Scholar
  145. Wang G, McCain ML, Yang L, He A, Pasqualini FS, Agarwal A, Yuan H, Jiang D, Zhang D, Zangi L, Geva J, Roberts AE, Ma Q, Ding J, Chen J, Wang DZ, Li K, Wang J, Wanders RJ, Kulik W, Vaz FM, Laflamme MA, Murry CE, Chien KR, Kelley RI, Church GM, Parker KK, Pu WT (2014) Modeling the mitochondrial cardiomyopathy of Barth syndrome with induced pluripotent stem cell and heart-on-chip technologies. Nat Med 20(6):616–623PubMedCentralPubMedCrossRefGoogle Scholar
  146. Williams C, Quinn KP, Georgakoudi I, Black LD III (2014) Young developmental age cardiac extracellular matrix promotes the expansion of neonatal cardiomyocytes in vitro. Acta Biomater 10(1):194–204PubMedCrossRefGoogle Scholar
  147. Wu JC, Chung TH, Tseng YZ, Wang SM (1999) N-cadherin/catenin-based costameres in cultured chicken cardiomyocytes. J Cell Biochem 75(1):93–104PubMedCrossRefGoogle Scholar
  148. Wu JC, Sung HC, Chung TH, DePhilip RM (2002) Role of N-cadherin- and integrin-based costameres in the development of rat cardiomyocytes. J Cell Biochem 84(4):717–724PubMedCrossRefGoogle Scholar
  149. Yamada KA, Rogers JG, Sundset R, Steinberg TH, Saffitz JE (2003) Up-regulation of connexin45 in heart failure. J Cardiovasc Electrophysiol 14(11):1205–1212PubMedCrossRefGoogle Scholar
  150. Yin H, Price F, Rudnicki MA (2013) Satellite cells and the muscle stem cell niche. Physiol Rev 93(1):23–67PubMedCentralPubMedCrossRefGoogle Scholar
  151. Zhang J, Wilson GF, Soerens AG, Koonce CH, Yu J, Palecek SP, Thomson JA, Kamp TJ (2009) Functional cardiomyocytes derived from human induced pluripotent stem cells. Circ Res 104(4):12CrossRefGoogle Scholar
  152. Zhuang J, Yamada KA, Saffitz JE, Kleber AG (2000) Pulsatile stretch remodels cell-to-cell communication in cultured myocytes. Circ Res 87(4):316–322PubMedCrossRefGoogle Scholar
  153. Zimetbaum PJ, Josephson ME (2003) Use of the electrocardiogram in acute myocardial infarction. N Engl J Med 348(10):933–940PubMedCrossRefGoogle Scholar
  154. Zuppinger C, Schaub MC, Eppenberger HM (2000) Dynamics of early contact formation in cultured adult rat cardiomyocytes studied by N-cadherin fused to green fluorescent protein. J Mol Cell Cardiol 32(4):539–555PubMedCrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  1. 1.Cardiovascular Modeling LaboratoryUniversity of California, IrvineIrvineUSA
  2. 2.Department of Biomedical EngineeringUniversity of Southern CaliforniaLos AngelesUSA

Personalised recommendations