Discrete Input/Output Maps and their Relation to Proper Orthogonal Decomposition

Abstract

Current control design techniques require system models of moderate size to be applicable. The generation of such models is challenging for complex systems which are typically described by partial differential equations (PDEs), and model-order reduction or low-order-modeling techniques have been developed for this purpose. Many of them heavily rely on the state space models and their discretizations. However, in control applications, a sufficient accuracy of the models with respect to their input/output (I/O) behavior is typically more relevant than the accurate representation of the system states. Therefore, a discretization framework has been developed and is discussed here, which heavily focuses on the I/O map of the original PDE system and its direct discretization in the form of an I/O matrix and with error bounds measuring the relevant I/O error. We also discuss an SVD-based dimension reduction for the matrix representation of an I/O map and how it can be interpreted in terms of the Proper Orthogonal Decomposition (POD) method which gives rise to a more general POD approach in time capturing. We present numerical examples for both, reduced I/O map s and generalized POD.

References

  1. 1.
    Ainsworth, M., Oden, J.T.: A Posteriori Error Estimation in Finite Element Analysis. Wiley-Interscience, New York (2000)CrossRefMATHGoogle Scholar
  2. 2.
    Antoulas, A.C.: Approximation of Large-Scale Dynamical Systems. Society for Industrial and Applied Mathematics (SIAM), Philadelphia (2005)Google Scholar
  3. 3.
    Baumann, M.: Nonlinear model order reduction using POD/DEIM for optimal control of Burgers’ equation. Master’s thesis, Delft University of Technology (2013)Google Scholar
  4. 4.
    Baumann, M., Heiland, J.: genpod – matlab and python implementation with test cases. https://github.com/ManuelMBaumann/genpod.git, September (2014)
  5. 5.
    Benner, P., Mehrmann, V., Sorensen, D., (eds.): Dimension Reduction of Large-Scale Systems. LNSCE, vol. 45. Springer, Heidelberg (2005)Google Scholar
  6. 6.
    Berkooz, G., Holmes, P., Lumley, J.L.: The proper orthogonal decomposition in the analysis of turbulent flows. In: Annual Review of Fluid Mechanics, vol. 25, pp 539–575. Annual Reviews, Palo Alto (1993)Google Scholar
  7. 7.
    Ciarlet, P.G.: The Finite Element Method for Elliptic Problems. Classics in Applied Mathematics, vol. 40. Society for Industrial and Applied Mathematics (SIAM), Philadelphia (2002)Google Scholar
  8. 8.
    De Lathauwer, L., De Moor, B., Vandewalle, J.: A multilinear singular value decomposition. SIAM J. Matrix Anal. Appl. 21(4), 1253–1278 (2000)CrossRefMATHMathSciNetGoogle Scholar
  9. 9.
    De Lathauwer, L., De Moor, B., Vandewalle, J.: On the best rank-1 and rank-\((R_{1},R_{2},\cdots \,,R_{N})\) approximation of higher-order tensors. SIAM J. Matrix Anal. Appl. 21(4), 1324–1342 (2000)Google Scholar
  10. 10.
    Douglas, R.G.: Banach Algebra Techniques in Operator Theory. Academic, New York (1972)MATHGoogle Scholar
  11. 11.
    Eriksson, K., Estep, D., Hansbo, P., Johnson, C.: Introduction to adaptive methods for differential equations. Acta Numer. vol. 4, pp 105–158. Cambridge University Press, Cambridge (1995). http://journals.cambridge.org/action/displayFulltext?type=8&fid=2604116&jid=ANU&volumeId=4&issueId=-1&aid=1771172
  12. 12.
    Eriksson, K., Johnson, C.: Adaptive finite element methods for parabolic problems. II. Optimal error estimates in \(L_{\infty }L_{2}\) and \(L_{\infty }L_{\infty }\). SIAM J. Numer. Anal. 32(3), 706–740 (1995)Google Scholar
  13. 13.
    Evans, L.C.: Partial Differential Equations. Graduate Studies in Mathematics, vol. 19. American Mathematical Society, Providence (1998)Google Scholar
  14. 14.
    Gerhard, J., Pastoor, M., King, R., Noack, B.R., Dillmann, A., Morzynski, M., Tadmor, G.: Model-based control of vortex shedding using low-dimensional galerkin models. AIAA-Paper 2003-4262 (2003)Google Scholar
  15. 15.
    Gugercin, S., Antoulas, A.C.: A survey of model reduction by balanced truncation and some new results. Int. J. Control 77(8), 748–766 (2004)CrossRefMATHMathSciNetGoogle Scholar
  16. 16.
    Heiland, J., Mehrmann, V.: Distributed control of linearized Navier-Stokes equations via discretized input/output maps. Z. Angew. Math. Mech. 92(4), 257–274 (2012)CrossRefMATHMathSciNetGoogle Scholar
  17. 17.
    Heiland, J., Mehrmann, V., Schmidt, M.: A new discretization framework for input/output maps and its application to flow control. In: King, R. (ed.) Active Flow Control. Papers contributed to the Conference “Active Flow Control II 2010”, Berlin, May 26–28, 2010, pp 375–372. Springer, Berlin (2010)Google Scholar
  18. 18.
    Johnson, C.: Numerical Solution of Partial Differential Equations by the Finite Element Method. Cambridge University Press, Cambridge (1987)MATHGoogle Scholar
  19. 19.
    Lehmann, O., Luchtenburg, D.M., Noack, B.R., King, R., Morzynski, M., Tadmor, G.: Wake stabilization using POD Galerkin models with interpolated modes. In: Proceedings of the 44th IEEE Conference on Decision and Control and European Conference ECC, Invited Paper 1618 (2005)Google Scholar
  20. 20.
    Pastoor, M., King, R., Noack, B.R., Dillmann, A., Tadmor, G.: Model-based coherent-structure control of turbulent shear flows using low-dimensional vortex models. AIAA-Paper 2003-4261 (2003)Google Scholar
  21. 21.
    Pazy, A.: Semigroups of Linear Operators and Applications to Partial Differential Equations. Applied Mathematical Sciences, vol. 44. Springer, New York (1983)Google Scholar
  22. 22.
    Schmidt, M.: Systematic discretization of input/output Maps and other contributions to the control of distributed parameter systems. PhD thesis, TU Berlin, Fakultät Mathematik, Berlin (2007)Google Scholar
  23. 23.
    Staffans, O.J.: Well-posed Linear Systems. Cambridge University Press, Cambridge/ New York (2005)CrossRefMATHGoogle Scholar
  24. 24.
    Thomée, V.: Galerkin Finite Element Methods for Parabolic Problems. Springer, Berlin (1997)CrossRefMATHGoogle Scholar
  25. 25.
    Volkwein, S.: Model reduction using proper orthogonal decomposition. Lecture Notes, Institute of Mathematics and Scientific Computing, University of Graz, Austria (2011)Google Scholar
  26. 26.
    Werner, D.: Funktionalanalysis. Springer, Berlin (2000)MATHGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  1. 1.Faculty EWIDelft Institute of Applied MathematicsDelftThe Netherlands
  2. 2.Max Planck Institute for Dynamics of Complex Technical SystemsMagdeburgGermany
  3. 3.University of Applied Sciences OffenburgOffenburgGermany

Personalised recommendations