Advertisement

Distance Problems for Linear Dynamical Systems

Chapter

Abstract

This chapter is concerned with distance problems for linear time-invariant differential and differential-algebraic equations. Such problems can be formulated as distance problems for matrices and pencils. In the first part, we discuss characterizations of the distance of a regular matrix pencil to the set of singular matrix pencils. The second part focuses on the distance of a stable matrix or pencil to the set of unstable matrices or pencils. We present a survey of numerical procedures to compute or estimate these distances by taking into account some of the historical developments as well as the state of the art.

Keywords

Singular Vector Hamiltonian Matrix Left Eigenvector Imaginary Eigenvalue Matrix Pencil 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Benner, P., Byers, R., Barth, E.: Algorithm 800: Fortran 77 subroutines for computing the eigenvalues of Hamiltonian matrices I: the square reduced method. ACM Trans. Math. Softw. 26(1), 49–77 (2000)CrossRefzbMATHGoogle Scholar
  2. 2.
    Benner, P., Byers, R., Mehrmann, V., Xu, H.: Robust numerical methods for robust control. Tech. Rep. 06-2004, Institut für Mathematik, TU Berlin (2004)Google Scholar
  3. 3.
    Benner, P., Kressner, D.: Algorithm 854: Fortran 77 subroutines for computing the eigenvalues of Hamiltonian matrices II. ACM Trans. Math. Softw. 32(2), 352–373 (2006)CrossRefMathSciNetGoogle Scholar
  4. 4.
    Benner, P., Kressner, D., Mehrmann, V.: Skew-Hamiltonian and Hamiltonian eigenvalue problems: theory, algorithms and applications. In: Drmač Z., Marušić M., Zutek Z. (eds.) Proceedings of the Conference on Applied Mathematics and Scientific Computing, Brijuni, pp. 3–39. Springer (2005)Google Scholar
  5. 5.
    Benner, P., Sima, V., Voigt, M.: \(\mathcal{L}_{\infty }\)-norm computation for continuous-time descriptor systems using structured matrix pencils. IEEE Trans. Autom. Control 57(1), 233–238 (2012)Google Scholar
  6. 6.
    Benner, P., Sima, V., Voigt, M.: FORTRAN 77 subroutines for the solution of skew-Hamiltonian/Hamiltonian eigenproblems – Part I: algorithms and applications. Preprint MPIMD/13-11, Max Planck Institute Magdeburg (2013). Available from http://www.mpi-magdeburg.mpg.de/preprints/2013/11/
  7. 7.
    Benner, P., Sima, V., Voigt, M.: FORTRAN 77 subroutines for the solution of skew-Hamiltonian/Hamiltonian eigenproblems – Part II: implementation and numerical results. Preprint MPIMD/13-12, Max Planck Institute Magdeburg (2013). Available from http://www.mpi-magdeburg.mpg.de/preprints/2013/12/
  8. 8.
    Benner, P., Voigt, M.: A structured pseudospectral method for \(\mathcal{H}_{\infty }\)-norm computation of large-scale descriptor systems. Math. Control Signals Syst. 26(2), 303–338 (2014)CrossRefzbMATHMathSciNetGoogle Scholar
  9. 9.
    Boley, D.L.: The algebraic structure of pencils and block Toeplitz matrices. Linear Algebra Appl. 279(1–3), 255–279 (1998)CrossRefzbMATHMathSciNetGoogle Scholar
  10. 10.
    Boyd, S., Balakrishnan, V.: A regularity result for the singular values of a transfer matrix and a quadratically convergent algorithm for computing its L -norm. Syst. Control Lett. 15(1), 1–7 (1990)CrossRefzbMATHMathSciNetGoogle Scholar
  11. 11.
    Boyd, S., Balakrishnan, V., Kabamba, P.: A bisection method for computing the H norm of a transfer matrix and related problems. Math. Control Signals Syst. 2(3), 207–219 (1989)CrossRefzbMATHMathSciNetGoogle Scholar
  12. 12.
    Bruinsma, N.A., Steinbuch, M.: A fast algorithm to compute the H -norm of a transfer function matrix. Syst. Control Lett. 14(4), 287–293 (1990)CrossRefzbMATHMathSciNetGoogle Scholar
  13. 13.
    Buttà, P., Guglielmi, N., Noschese, S.: Computing the structured pseudospectrum of a Toeplitz matrix and its extreme points. SIAM J. Matrix Anal. Appl. 33(4), 1300–1319 (2012)CrossRefzbMATHMathSciNetGoogle Scholar
  14. 14.
    Byers, R.: A bisection method for measuring the distance of a stable matrix to the unstable matrices. SIAM J. Sci. Stat. Comput. 9, 875–881 (1988)CrossRefzbMATHMathSciNetGoogle Scholar
  15. 15.
    Byers, R., He, C., Mehrmann, V.: Where is the nearest non-regular pencil? Linear Algebra Appl. 285, 81–105 (1998)CrossRefzbMATHMathSciNetGoogle Scholar
  16. 16.
    Demmel, J.W.: On condition numbers and the distance to the nearest ill-posed problem. Numer. Math. 51(3), 251–289 (1987)CrossRefzbMATHMathSciNetGoogle Scholar
  17. 17.
    Du, N.H., Thuan, D.D., Liem, N.C.: Stability radius of implicit dynamic equations with constant coefficients on time scales. Syst. Control Lett. 60(8), 596–603 (2011)CrossRefzbMATHMathSciNetGoogle Scholar
  18. 18.
    Du, N.H., Linh, V.H., Mehrmann, V.: Robust stability of differential-algebraic equations. In: Ilchmann, A., Reis, T. (eds.) Surveys in Differential-Algebraic Equations I. Differential-Algebraic Equations Forum, chap. 2, pp. 63–95. Springer, Berlin/Heidelberg (2013)CrossRefGoogle Scholar
  19. 19.
    Freitag, M.A., Spence, A.: A Newton-based method for the calculation of the distance to instability. Linear Algebra Appl. 435(12), 3189–3205 (2011)CrossRefzbMATHMathSciNetGoogle Scholar
  20. 20.
    Freitag, M.A., Spence, A.: A new approach for calculating the real stability radius. BIT 54(2), 381–400 (2014)CrossRefzbMATHMathSciNetGoogle Scholar
  21. 21.
    Freitag, M.A., Spence, A., Van Dooren, P.: Calculating the H -norm using the implicit determinant method. SIAM J. Matrix Anal. Appl. 35(2), 619–634 (2014)CrossRefzbMATHMathSciNetGoogle Scholar
  22. 22.
    Genin, Y., Dooren, P.V., Vermaut, V.: Convergence of the calculation of \(\mathcal{H}_{\infty }\) norms and related questions. In: Proceedings of 13th Symposium on Mathematical Theory of Networks and Systems, pp. 429–432. Padova (1998)Google Scholar
  23. 23.
    Golub, G.H., Van Loan, C.F.: Matrix Computations, 4th edn. The John Hopkins University Press, Baltimore (2013)zbMATHGoogle Scholar
  24. 24.
    Guglielmi, N., Gürbüzbalaban, M., Overton, M.L.: Fast approximation of the H norm via optimization of spectral value sets. SIAM J. Matrix Anal. Appl. 34(2), 709–737 (2013)CrossRefzbMATHMathSciNetGoogle Scholar
  25. 25.
    Guglielmi, N., Kressner, D., Lubich, C.: Low rank differential equations for Hamiltonian matrix nearness problems. Numer. Math. (2014). Also available from http://link.springer.com/article/10.1007%2Fs00211-014-0637-x
  26. 26.
    Guglielmi, N., Kressner, D., Lubich, C.: Computing extremal points of symplectic pseudospectra and solving symplectic matrix nearness problems. SIAM J. Matrix Anal. Appl. 35(2), 1407–1428 (2014)CrossRefzbMATHMathSciNetGoogle Scholar
  27. 27.
    Guglielmi, N., Lubich, C.: Differential equations for roaming pseudospectra: paths to extremal points and boundary tracking. SIAM J. Numer. Anal. 49(3), 1194–1209 (2011)CrossRefzbMATHMathSciNetGoogle Scholar
  28. 28.
    Guglielmi, N., Lubich, C.: Erratum/addendum: Differential equations for roaming pseudospectra: paths to extremal points and boundary tracking. SIAM J. Numer. Anal. 50(2), 977–981 (2012)CrossRefzbMATHMathSciNetGoogle Scholar
  29. 29.
    Guglielmi, N., Lubich, C.: Low-rank dynamics for computing extremal points of real pseudospectra. SIAM J. Matrix Anal. Appl. 34(1), 40–66 (2013)CrossRefzbMATHMathSciNetGoogle Scholar
  30. 30.
    Guglielmi, N., Manetta, M.: Approximating real stability radii (2014). Available from http://matematica.univaq.it/~guglielm/PAPERS/GuMaSR.pdf Google Scholar
  31. 31.
    Guglielmi, N., Overton, M.L.: Fast algorithms for the approximation of the pseudospectral abscissa and pseudospectral radius of a matrix. SIAM J. Matrix Anal. Appl. 32(4), 1166–1192 (2011)CrossRefzbMATHMathSciNetGoogle Scholar
  32. 32.
    He, C., Watson, G.A.: An algorithm for computing the distance to instability. SIAM J. Matrix Anal. Appl. 20(1), 101–116 (1999)CrossRefMathSciNetGoogle Scholar
  33. 33.
    Higham, N.J., Konstantinov, M., Mehrmann, V., Petkov, P.: The sensitivity of computational control problems. IEEE Control Syst. Mag. 24(1), 28–43 (2004)CrossRefGoogle Scholar
  34. 34.
    Hinrichsen, D., Motscha, M.: Optimization problems in the robustness analysis of linear state space systems. In: Approximation and Optimization (Havana, 1987). Lecture Notes in Mathematics, vol. 1354, pp. 54–78. Springer, Berlin (1988)Google Scholar
  35. 35.
    Hinrichsen, D., Pritchard, A.J.: Stability radii of linear systems. Syst. Control Lett. 7, 1–10 (1986)CrossRefzbMATHMathSciNetGoogle Scholar
  36. 36.
    Hinrichsen, D., Pritchard, A.J.: Stability radius for structured perturbations and the algebraic Riccati equation. Syst. Control Lett. 8, 105–113 (1986)CrossRefzbMATHMathSciNetGoogle Scholar
  37. 37.
    Hinrichsen, D., Pritchard, A.J.: Real and Complex Stability Radii: A Survey. Progress in Systems and Control Theory, vol. 6, pp. 119–162. Birkhäuser, Boston (1990)Google Scholar
  38. 38.
    Hinrichsen, D., Pritchard, A.J.: Mathematical Systems Theory I: Modeling, State Space Analysis, Stability and Robustness. Texts in Applied Mathematics, vol. 48. Springer, New York (2005)Google Scholar
  39. 39.
    Karow, M.: μ-values and spectral value sets for linear perturbation classes defined by a scalar product. SIAM J. Matrix Anal. Appl. 32(3), 845–865 (2011)Google Scholar
  40. 40.
    Karow, M., Kokiopoulou, E., Kressner, D.: On the computation of structured singular values and pseudospectra. Syst. Control Lett. 59(2), 122–129 (2010)CrossRefzbMATHMathSciNetGoogle Scholar
  41. 41.
    Kressner, D.: Finding the distance to instability of a large sparse matrix. In: IEEE International Symposium on Computer-Aided Control Systems Design, Munich (2006)Google Scholar
  42. 42.
    Kressner, D., Vandereycken, B.: Subspace methods for computing the pseudospectral abscissa and the stability radius. SIAM J. Matrix Anal. Appl. 35(1), 292–313 (2014)CrossRefzbMATHMathSciNetGoogle Scholar
  43. 43.
    Kunkel, P., Mehrmann, V.: Differential-Algebraic Equations. Analysis and Numerical Solution. EMS Publishing House, Zürich (2006)CrossRefzbMATHGoogle Scholar
  44. 44.
    Lewis, A.S., Malick, J.: Alternating projections on manifolds. Math. Oper. Res. 33(1), 216–234 (2008)CrossRefzbMATHMathSciNetGoogle Scholar
  45. 45.
    Markovsky, I.: Low Rank Approximation: Algorithms, Implementation, Applications. Communications and Control Engineering. Springer, London (2012)CrossRefzbMATHGoogle Scholar
  46. 46.
    Markovsky, I., Usevich, K.: Software for weighted structured low-rank approximation. J. Comput. Appl. Math. 256, 278–292 (2014)CrossRefMathSciNetGoogle Scholar
  47. 47.
    Mehl, C., Mehrmann, V., Wojtylak, M.: On the distance to singularity via low rank perturbations. MATHEON-Preprint 1058, DFG-Forschungszentrum MATHEON (2014)Google Scholar
  48. 48.
    Mehrmann, V., Stykel, T.: Balanced truncation model reduction for large-scale systems in descriptor form. In: Benner, P., Mehrmann, V., Sorensen, D. (eds.) Dimension Reduction of Large-Scale Systems. Lecture Notes in Computational Science and Engineering, vol. 45, chap. 3, pp. 89–116. Springer, Berlin/Heidelberg, New York (2005)Google Scholar
  49. 49.
    Mengi, E., Yildirim, E.A., Kiliç, M.: Numerical optimization of eigenvalues of Hermitian matrix functions. SIAM J. Matrix Anal. Appl. 35(2), 699–724 (2014)CrossRefzbMATHMathSciNetGoogle Scholar
  50. 50.
    Michiels, W., Guglielmi, N.: An iterative method for computing the pseudospectral abscissa for a class of nonlinear eigenvalue problems. SIAM J. Sci. Comput. 34(4), A2366–A2393 (2012)CrossRefzbMATHMathSciNetGoogle Scholar
  51. 51.
    Mitchell, T.: Robust and efficient methods for approximation and optimization of stability measures. Ph.D. thesis, NYU (2014)Google Scholar
  52. 52.
    Mitchell, T., Overton, M.L.: Fast approximation of the H norm via hybrid expansion-contraction using spectral value sets. Tech. Rep. (2014)Google Scholar
  53. 53.
    Qiu, L., Bernhardsson, B., Rantzer, A., Davison, E.J., Young, P.M., Doyle, J.C.: A formula for computation of the real stability radius. Automatica 31(6), 879–890 (1995)CrossRefzbMATHMathSciNetGoogle Scholar
  54. 54.
    Reis, T.: Circuit synthesis of passive descriptor systems – a modified nodal approach. Int. J. Circ. Theor. Appl. 38(1), 44–68 (2010)CrossRefzbMATHGoogle Scholar
  55. 55.
    Riaza, R.: Differential-Algebraic Systems. Analytical Aspects and Circuit Applications. World Scientific, Singapore (2008)CrossRefzbMATHGoogle Scholar
  56. 56.
    Sreedhar, J., Dooren, P.V., Tits, A.L.: A fast algorithm to compute the real structured stability radius. In: Jeltsch, R., Mansour, M. (eds.) Stability Theory, International Series of Numerical Mathematics, vol. 121, pp. 219–230. Birkhäuser, Basel (1996)Google Scholar
  57. 57.
    Stewart, G.W., Sun, J.G.: Matrix Perturbation Theory. Academic, New York (1990)zbMATHGoogle Scholar
  58. 58.
    Trefethen, L.N., Embree, M.: Spectra and Pseudospectra: The Behavior of Nonnormal Matrices and Operators. Princeton University Press, Princeton (2005)Google Scholar
  59. 59.
    Trenn, S.: Solution concepts for linear DAEs: A survey. In: Ilchmann, A., Reis, T. (eds.) Surveys in Differential-Algebraic Equations I. Differential-Algebraic Equations Forum, pp. 137–172. Springer, Berlin/Heidelberg (2013)CrossRefGoogle Scholar
  60. 60.
    Van Loan, C.F.: How near is a stable matrix to an unstable matrix? Contemp. Math. 47, 465–478 (1984)CrossRefGoogle Scholar
  61. 61.
    Voigt, M.: On linear-quadratic optimal control and robustness of differential-algebraic systems. Dissertation, Fakultät für Mathematik, Otto-von-Guericke-Universität Magdeburg (2015). SubmittedGoogle Scholar
  62. 62.
    Wicks, M., DeCarlo, R.A.: Computing the distance to an uncontrollable system. IEEE Trans. Automat. Control 36(1), 39–49 (1991)CrossRefzbMATHMathSciNetGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  1. 1.ANCHP, EPF LausanneLausanneSwitzerland
  2. 2.Institut für MathematikTechnische Universität BerlinBerlinGermany

Personalised recommendations