Skip to main content

Abstract

Matrix polynomial eigenproblems arise in many application areas, both directly and as approximations for more general nonlinear eigenproblems. One of the most common strategies for solving a polynomial eigenproblem is via a linearization, which replaces the matrix polynomial by a matrix pencil with the same spectrum, and then computes with the pencil. Many matrix polynomials arising from applications have additional algebraic structure, leading to symmetries in the spectrum that are important for any computational method to respect. Thus it is useful to employ a structured linearization for a matrix polynomial with structure. This essay surveys the progress over the last decade in our understanding of linearizations and their construction, both with and without structure, and the impact this has had on numerical practice.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Supported by Ministerio de Economía y Competitividad of Spain through grant MTM2012-32542.

  2. 2.

    Supported by Engineering and Physical Sciences Research Council grant EP/I005293.

  3. 3.

    The story is quite different for singular polynomials P. In that case, none of the pencils in \(\mathbb{D}\mathbb{L}(P)\) is ever a linearization for P, even when P has no structure [18].

  4. 4.

    Pun intended.

  5. 5.

    The previous footnote2, and this footnote3 to that footnote2, are here especially for Volker.

References

  1. Adhikari, B.: Backward perturbation and sensitivity analysis of structured polynomial eigenvalue problems. PhD thesis, Indian Institute of Technology Guwahati (2008)

    Google Scholar 

  2. Adhikari, B., Alam, R., Kressner, D.: Structured eigenvalue condition numbers and linearizations for matrix polynomials. Linear Algebra Appl. 435(9), 2193–2221 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  3. Ahmad, Sk.S., Mehrmann, V.: Perturbation analysis for complex symmetric, skew symmetric even and odd matrix polynomials. Electron. Trans. Numer. Anal. 38, 275–302 (2011)

    Google Scholar 

  4. Al-Ammari, M., Tisseur, F.: Hermitian matrix polynomials with real eigenvalues of definite type. Part I: classification. Linear Algebra Appl. 436, 3954–3973 (2012)

    MATH  MathSciNet  Google Scholar 

  5. Amiraslani, A., Corless, R.M., Lancaster, P.: Linearization of matrix polynomials expressed in polynomial bases. IMA J. Numer. Anal. 29, 141–157 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  6. Antoniou, E.N., Vologiannidis, S.: A new family of companion forms of polynomial matrices. Electron. J. Linear Algebra 11, 78–87 (2004)

    MATH  MathSciNet  Google Scholar 

  7. Apel, T., Mehrmann, V., Watkins, D.: Structured eigenvalue methods for the computation of corner singularities in 3D anisotropic elastic structures. Comput. Methods Appl. Mech. Eng. 191, 4459–4473 (2002)

    Article  MATH  Google Scholar 

  8. Apel, T., Mehrmann, V., Watkins, D.: Numerical solution of large scale structured polynomial or rational eigenvalue problems. In: Cucker, F., Olver, P. (eds.) Foundations of Computational Mathematics. London Mathematical Society Lecture Note Series, vol. 312. Cambridge University Press, Cambridge, pp. 137–157 (2004)

    Google Scholar 

  9. Bai, Z., Demmel, J.W., Dongarra, J., Ruhe, A., van der Vorst, H.A. (eds.): Templates for the Solution of Algebraic Eigenvalue Problems: A Practical Guide. Society for Industrial and Applied Mathematics, Philadelphia (2000)

    Google Scholar 

  10. Barnett, S.: Congenial matrices. Linear Algebra Appl. 41, 277–298 (1981)

    Article  MATH  MathSciNet  Google Scholar 

  11. Bora, S.: Structured eigenvalue condition number and backward error of a class of polynomial eigenvalue problems. SIAM J. Matrix Anal. Appl. 31(3), 900–917 (2009)

    Article  MathSciNet  Google Scholar 

  12. Bora, S., Karow, M., Mehl, C., Sharma, P.: Structured eigenvalue backward errors of matrix pencils and polynomials with Hermitian and related structures. SIAM J. Matrix Anal. Appl. 35(2), 453–475 (2014)

    Article  MATH  MathSciNet  Google Scholar 

  13. Bueno, M.I., De Terán, F., Dopico, F.M.: Recovery of eigenvectors and minimal bases of matrix polynomials from generalized Fiedler linearizations. SIAM J. Matrix Anal. Appl. 32, 463–483 (2011)

    Google Scholar 

  14. Bueno, M.I., Furtado, S.: Palindromic linearizations of a matrix polynomial of odd degree obtained from Fiedler pencils with repetition. Electron. J. Linear Algebra 23, 562–577 (2012)

    MATH  MathSciNet  Google Scholar 

  15. Byers, R., Mackey, D.S., Mehrmann, V., Xu, H.: Symplectic, BVD, and palindromic approaches to discrete-time control problems. In: Petkov, P., Christov, N. (eds.) A Collection of Papers Dedicated to the 60th Anniversary of Mihail Konstantinov, Sofia, pp. 81–102. Publishing House Rodina (2009). Also available as MIMS EPrint 2008.35, Manchester Institute for Mathematical Sciences, Manchester, Mar 2008

    Google Scholar 

  16. Byers, R., Mehrmann, V., Xu, H.: Trimmed linearizations for structured matrix polynomials. Linear Algebra Appl. 429, 2373–2400 (2008)

    Google Scholar 

  17. Corless, R.M.: Generalized companion matrices in the Lagrange basis. In: Gonzalez-Vega, L., Recio, T., (eds.) Proceedings EACA, Santander, pp. 317–322 (2004)

    Google Scholar 

  18. De Terán, F., Dopico, F.M., Mackey, D.S.: Linearizations of singular matrix polynomials and the recovery of minimal indices. Electron. J. Linear Algebra 18, 371–402 (2009)

    Google Scholar 

  19. De Terán, F., Dopico, F.M., Mackey, D.S.: Fiedler companion linearizations and the recovery of minimal indices. SIAM J. Matrix Anal. Appl. 31, 2181–2204 (2010)

    Google Scholar 

  20. De Terán, F., Dopico, F.M., Mackey, D.S.: Palindromic companion forms for matrix polynomials of odd degree. J. Comput. Appl. Math. 236, 1464–1480 (2011)

    Google Scholar 

  21. De Terán, F., Dopico, F.M., Mackey, D.S.: Fiedler companion linearizations for rectangular matrix polynomials. Linear Algebra Appl. 437, 957–991 (2012)

    Google Scholar 

  22. De Terán, F., Dopico, F.M., Mackey, D.S.: Spectral equivalence of matrix polynomials and the index sum theorem. Linear Algebra Appl. 459, 264–333 (2014)

    Google Scholar 

  23. De Terán, F., Dopico, F.M., Mackey, D.S.: A quasi-canonical form for quadratic matrix polynomials, Part 2: the singular case (2014, in preparation)

    Google Scholar 

  24. De Terán, F., Dopico, F.M., Mackey, D.S., Perović, V.: Quadratic realizability for palindromic matrix polynomials (2014, in preparation)

    Google Scholar 

  25. Duffin, R.J.: The Rayleigh-Ritz method for dissipative and gyroscopic systems. Q. Appl. Math. 18, 215–221 (1960)

    MATH  MathSciNet  Google Scholar 

  26. Effenberger, C., Kressner, D.: Chebyshev interpolation for nonlinear eigenvalue problems. BIT Numer. Math. 52, 933–951 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  27. Fan, H.-Y., Lin, W.-W., Van Dooren, P.: Normwise scaling of second order polynomial matrices. SIAM J. Matrix Anal. Appl. 26(1), 252–256 (2004)

    Google Scholar 

  28. Fassbender, H., Mackey, D.S., Mackey, N., Schröder, C.: Structured polynomial eigenproblems related to time-delay systems. Electron. Trans. Numer. Anal. 31, 306–330 (2008)

    MATH  MathSciNet  Google Scholar 

  29. Fiedler, M.: A note on companion matrices. Linear Algebra Appl. 372, 325–331 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  30. Frobenius, G.: Theorie der linearen Formen mit ganzen Coefficienten. J. Reine Angew. Math. (Crelle) 86, 146–208 (1878)

    Google Scholar 

  31. Gladwell, G.M.L.: Inverse Problems in Vibration, 2nd edn. Kluwer Academic, Dordrecht (2004)

    Google Scholar 

  32. Gohberg, I., Lancaster, P., Rodman, L.: Matrix Polynomials. Academic, New York (1982)

    MATH  Google Scholar 

  33. Good, I.J.: The colleague matrix, a Chebyshev analogue of the companion matrix. Q. J. Math. Oxf. Ser. 12, 61–68 (1961)

    Article  MATH  MathSciNet  Google Scholar 

  34. Grammont, L., Higham, N.J., Tisseur, F.: A framework for analyzing nonlinear eigenproblems and parametrized linear systems. Linear Algebra Appl. 435, 623–640 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  35. Güttel, S., Van Beeumen, R., Meerbergen, K., Michiels, W.: NLEIGS: a class of robust fully rational Krylov methods for nonlinear eigenvalue problems. SIAM J. Sci. Comput. 36(6), A2842–A2864 (2014). Also available as MIMS EPrint 2013.49. Manchester Institute for Mathematical Sciences, The University of Manchester (2013)

    Google Scholar 

  36. Hammarling, S., Munro, C.J., Tisseur, F.: An algorithm for the complete solution of quadratic eigenvalue problems. ACM Trans. Math. Softw. 39(3), 18:1–18:19 (2013)

    Google Scholar 

  37. Higham, N.J., Li, R.-C., Tisseur, F.: Backward error of polynomial eigenproblems solved by linearization. SIAM J. Matrix Anal. Appl. 29, 1218–1241 (2007)

    Article  MathSciNet  Google Scholar 

  38. Higham, N.J., Mackey, D.S., Mackey, N., Tisseur, F.: Symmetric linearizations for matrix polynomials. SIAM J. Matrix Anal. Appl. 29, 143–159 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  39. Higham, N.J., Mackey, D.S., Tisseur, F.: The conditioning of linearizations of matrix polynomials. SIAM J. Matrix Anal. Appl. 28, 1005–1028 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  40. Higham, N.J., Mackey, D.S., Tisseur, F.: Definite matrix polynomials and their linearization by definite pencils. SIAM J. Matrix Anal. Appl. 31, 478–502 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  41. Higham, N.J., Mackey, D.S., Tisseur, F., Garvey, S.D.: Scaling, sensitivity and stability in the numerical solution of quadratic eigenvalue problems. Int. J. Numer. Methods Eng. 73, 344–360 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  42. Hilliges, A., Mehl, C., Mehrmann, V.: On the solution of palindromic eigenvalue problems. In: Proceedings of the 4th European Congress on Computational Methods in Applied Sciences and Engineering (ECCOMAS), Jyväskylä (2004) CD-ROM

    Google Scholar 

  43. Hofer, M., Finger, N., Schöberl, J., Zaglmayr, S., Langer, U., Lerch, R.: Finite element simulation of wave propagation in periodic piezoelectric SAW structures. IEEE Trans. UFFC 53(6), 1192–1201 (2006)

    Article  Google Scholar 

  44. Huang, T.-M., Lin, W.-W., Su, W.-S.: Palindromic quadratization and structure-preserving algorithm for palindromic matrix polynomials of even degree. Numer. Math. 118, 713–735 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  45. Hwang, T.-M., Lin, W.-W., Mehrmann, V.: Numerical solution of quadratic eigenvalue problems with structure-preserving methods. SIAM J. Sci. Comput. 24, 1283–1302 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  46. Ipsen, I.C.F.: Accurate eigenvalues for fast trains. SIAM News 37(9), 1–2 (2004)

    Google Scholar 

  47. Kressner, D., Schröder, C., Watkins, D.S.: Implicit QR algorithms for palindromic and even eigenvalue problems. Numer. Algorithms 51(2), 209–238 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  48. Lancaster, P.: Lambda-matrices and vibrating systems. Pergamon, Oxford (1966)

    MATH  Google Scholar 

  49. Lancaster, P.: Strongly stable gyroscopic systems. Electron. J. Linear Algebra, 5, 53–66 (1999)

    MATH  MathSciNet  Google Scholar 

  50. Lancaster, P., Rodman, L.: The Algebraic Riccati Equation. Oxford University Press, Oxford (1995)

    Google Scholar 

  51. Lazebnik, F.: On systems of linear diophantine equations. Math. Mag. 69(4), 261–266 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  52. Mackey, D.S.: Structured linearizations for matrix polynomials. PhD thesis, The University of Manchester, Manchester (2006). Available as MIMS EPrint 2006.68. Manchester Institute for Mathematical Sciences.

    Google Scholar 

  53. Mackey, D.S.: The continuing influence of Fiedler’s work on companion matrices. Linear Algebra Appl. 439(4), 810–817 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  54. Mackey, D.S.: A quasi-canonical form for quadratic matrix polynomials, Part 1: the regular case (2014, in preparation)

    Google Scholar 

  55. Mackey, D.S., Mackey, N., Mehl, C., Mehrmann, V.: Vector spaces of linearizations for matrix polynomials. SIAM J. Matrix Anal. Appl. 28, 971–1004 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  56. Mackey, D.S., Mackey, N., Mehl, C., Mehrmann, V.: Structured polynomial eigenvalue problems: good vibrations from good linearizations. SIAM J. Matrix Anal. Appl. 28, 1029–1051 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  57. Mackey, D.S., Mackey, N., Mehl, C., Mehrmann, V.: Numerical methods for palindromic eigenvalue problems: computing the anti-triangular Schur form. Numer. Linear Algebra Appl. 16, 63–86 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  58. Mackey, D.S., Mackey, N., Mehl, C., Mehrmann, V.: Jordan structures of alternating matrix polynomials. Linear Algebra Appl. 432(4), 867–891 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  59. Mackey, D.S., Mackey, N., Mehl, C., Mehrmann, V.: Smith forms of palindromic matrix polynomials. Electron. J. Linear Algebra 22, 53–91 (2011)

    MATH  MathSciNet  Google Scholar 

  60. Mackey, D.S., Mackey, N., Mehl, C., Mehrmann, V.: Skew-symmetric matrix polynomials and their Smith forms. Linear Algebra Appl. 438(12), 4625–4653 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  61. Mackey, D.S., Mackey, N., Mehl, C., Mehrmann, V.: Möbius transformations of matrix polynomials. Article in Press in Linear Algebra Appl. 470, 120–184 (2015). http://dx.doi.org/10.1016/j.laa.2014.05.013

  62. Mackey, D.S., Perović, V.: Linearizations of matrix polynomials in Bernstein basis. Submitted for publication. Available as MIMS EPrint 2014.29, Manchester Institute for Mathematical Sciences, The University of Manchester, UK (2014)

    Google Scholar 

  63. Mackey, D.S., Tisseur, F.: The Hermitian quadratic realizability problem (2014, in preparation)

    Google Scholar 

  64. Meerbergen, K.: The quadratic Arnoldi method for the solution of the quadratic eigenvalue problem. SIAM J. Matrix Anal. Appl. 30(4), 1463–1482 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  65. Mehl, C.: Jacobi-like algorithms for the indefinite generalized Hermitian eigenvalue problem. SIAM J. Matrix Anal. Appl. 25(4), 964–985 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  66. Mehl, C., Mehrmann, V., Xu, H.: On doubly structured matrices and pencils that arise in linear response theory. Linear Algebra Appl. 380, 3–51 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  67. Mehrmann, V.: A step toward a unified treatment of continuous and discrete time control problems. Linear Algebra Appl. 241–243, 749–779 (1996)

    Article  MathSciNet  Google Scholar 

  68. Mehrmann, V., Schröder, C., Simoncini, V.: An implicitly-restarted Krylov method for real symmetric/skew-symmetric eigenproblems. Linear Algebra Appl. 436(10), 4070–4087 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  69. Mehrmann, V., Voss, H.: Nonlinear eigenvalue problems: a challenge for modern eigenvalue methods. GAMM Mitt. Ges. Angew. Math. Mech. 27(2), 121–152 (2004)

    MATH  MathSciNet  Google Scholar 

  70. Mehrmann, V., Watkins, D.: Structure-preserving methods for computing eigenpairs of large sparse skew-Hamiltonian/Hamiltonian pencils. SIAM J. Sci. Comput. 22, 1905–1925 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  71. Mehrmann, V., Watkins, D.: Polynomial eigenvalue problems with Hamiltonian structure. Electron. Trans. Numer. Anal. 13, 106–118 (2002)

    MATH  MathSciNet  Google Scholar 

  72. Moler, C.B., Stewart, G.W.: An algorithm for generalized matrix eigenvalue problems. SIAM J. Numer. Anal. 10(2), 241–256 (1973)

    Article  MATH  MathSciNet  Google Scholar 

  73. Noferini, V.: The behavior of the complete eigenstructure of a polynomial matrix under a generic rational transformation. Electron. J. Linear Algebra 23, 607–624 (2012)

    MATH  MathSciNet  Google Scholar 

  74. Perović, V., Mackey, D.S.: Linearizations of matrix polynomials in Newton basis. In preparation (2014)

    Google Scholar 

  75. Schröder, C.: Palindromic and Even Eigenvalue Problems – Analysis and Numerical Methods. PhD thesis, Technische Universität Berlin (2008)

    Google Scholar 

  76. Smith, H.J.S.: On systems of linear indeterminate equations and congruences. Philos. Trans. R. Soc. Lond. 151, 293–326 (1861)

    Article  Google Scholar 

  77. Su, Y., Bai, Z.: Solving rational eigenvalue problems via linearization. SIAM J. Matrix Anal. Appl. 32, 201–216 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  78. Tisseur, F.: Backward error and condition of polynomial eigenvalue problems. Linear Algebra Appl. 309, 339–361 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  79. Tisseur, F., Meerbergen, K.: The quadratic eigenvalue problem. SIAM Rev. 43, 235–286 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  80. Townsend, A., Noferini, V., Nakatsukasa, Y.: Vector spaces of linearizations of matrix polynomials: a bivariate polynomial approach. Submitted for publication. Available as MIMS EPrint 2012.118. Manchester Institute for Mathematical Sciences, The University of Manchester (2012)

    Google Scholar 

  81. Van Beeumen, R., Meerbergen, K., Michiels, W.: A rational Krylov method based on Hermite interpolation for nonlinear eigenvalue problems. SIAM. J. Sci. Comput. 35, 327–350 (2013)

    Article  MathSciNet  Google Scholar 

  82. Van Beeumen, R., Meerbergen, K., Michiels, W.: Linearization of Lagrange and Hermite interpolating matrix polynomials. IMA J. Numer. Anal. (2014). doi: 10.1093/imanum/dru019 (First published online on 7 May 2014)

    Google Scholar 

  83. Vologiannidis, S., Antoniou, E.N.: A permuted factors approach for the linearization of polynomial matrices. Math. Control Signals Syst. 22, 317–342 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  84. Wodehouse, P.G.: Psmith in the City. Adam & Charles Black, London (1910)

    Google Scholar 

  85. Zaglmayr, S.: Eigenvalue problems in SAW-filter simulations. Diplomarbeit, Johannes Kepler Universität Linz (2002)

    Google Scholar 

  86. Zeng, L., Su, Y.: A backward stable algorithm for quadratic eigenvalue problems. SIAM J. Matrix Anal. Appl. 35(2), 499–516 (2014)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Niloufer Mackey .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Mackey, D.S., Mackey, N., Tisseur, F. (2015). Polynomial Eigenvalue Problems: Theory, Computation, and Structure. In: Benner, P., Bollhöfer, M., Kressner, D., Mehl, C., Stykel, T. (eds) Numerical Algebra, Matrix Theory, Differential-Algebraic Equations and Control Theory. Springer, Cham. https://doi.org/10.1007/978-3-319-15260-8_12

Download citation

Publish with us

Policies and ethics