Theoretical and Experimental Analysis of Bifurcation Induced Passive Bandgap Reconfiguration

  • Michael J. Mazzoleni
  • Brian P. Bernard
  • Nicolas Garraud
  • David P. Arnold
  • Brian P. Mann
Part of the Conference Proceedings of the Society for Experimental Mechanics Series book series (CPSEMS)


This paper presents a theoretical analysis and experimental validation of passively reconfigurable bandgaps in a 1D chain of oscillators. Nonlinearities in the system result in a morphing of the bandgap structure when the excitation amplitude passes a certain threshold. Specifically, an asymmetric bistability is used to achieve amplitude dependent filtering through passive bandgap reconfiguration. The experimental system consists of a 1D chain of axially aligned pendulums arranged in dimer unit cells with nearest neighbor coupling. Repulsive magnets are used to induce bistability in the pendulums. Comparisons between experiments and theory show good agreement.


Vibrations Wave propagation Bandgaps Bifurcations Bistability 



The authors would like to thank Xiao Wen, Jake Greenstein, Charlie Arentzen, and Jared Little for their contributions to this project. This project was primarily funded by the NSF through grants CMMI-1300307 and CMMI-1300658, and it was also supported by the ARO.


  1. 1.
    Friesecke G, Wattis JAD (1994) Existence theorem for solitary waves on lattices. Commun Math Phys 161:391–418MATHMathSciNetCrossRefGoogle Scholar
  2. 2.
    Lazaridi AN, Nesterenko VF (1985) Observation of a new type of solitary waves in a one-dimensional granular medium. J Appl Mech Tech Phys 26:405–408CrossRefGoogle Scholar
  3. 3.
    Mead DJ (1996) Wave propagation in continuous periodic structures: research contributions from Southampton, 1964–1995. J Sound Vib 190:495–524CrossRefGoogle Scholar
  4. 4.
    Brillouin L (1953) Wave propagation in periodic structures. Dover, New YorkMATHGoogle Scholar
  5. 5.
    Kushwaha MS, Halevi P, Dobrzynski L, Djafari-Rouhani B (1993) Acoustic band structure of periodic elastic composites. Phys Rev Lett 71:2022–2025CrossRefGoogle Scholar
  6. 6.
    Kushwaha MS, Halevi P, Martinez G, Dobrzynski L, Djafari-Rouhani B (1994) Theory of acoustic band-structure of periodic elastic composites. Phys Rev B Condens Matter Mater Phys 49:2313–2322CrossRefGoogle Scholar
  7. 7.
    Daraio C, Nesterenko VF, Herbold EB, Jinn S (2006) Energy trapping and shock disintegration in a composite granular medium. Phys Rev Lett 96:058002CrossRefGoogle Scholar
  8. 8.
    Zhou XZ, Wang YS, Zhang C (2009) Effects of material parameters on elastic band gaps of two-dimensional solid phononic crystals. J Appl Phys 106:014903CrossRefGoogle Scholar
  9. 9.
    Sun HX, Zhang SY, Shui XJ (2012) A tunable acoustic diode made by a metal plate with periodical structure. J Appl Phys 100:103507Google Scholar
  10. 10.
    Doney R, Sen S (2006) Decorated, tapered, and highly nonlinear granular chain. Phys Rev Lett 97:155502CrossRefGoogle Scholar
  11. 11.
    Zhou W, Mackie DM, Taysing-Lara M, Dang G, Newman PG, Svensson S (2006) Novel reconfigurable semiconductor photonic crystal-mems device. Solid State Electron 50:908–913CrossRefGoogle Scholar
  12. 12.
    Edalati A, Boutayeb H, Denidni TA (2007) Band structure analysis of reconfigurable metallic crystals: effect of active elements. J Electromagn Waves Appl 21:2421–2430CrossRefGoogle Scholar
  13. 13.
    Herbold EB, Kim J, Nesterenko VF, Wang SY, Daraio C (2009) Pulse propagation in a linear and nonlinear diatomic periodic chain: effects of acoustic frequency band-gap. Acta Mech 205:85–103CrossRefGoogle Scholar
  14. 14.
    Yang XS, Wang BZ, Zhang Y (2004) Pattern-reconfigurable quasi-yagi microstrip antenna using a photonic band gap structure. Microw Opt Technol Lett 42:296–297CrossRefGoogle Scholar
  15. 15.
    Bernard BP, Mann BP (2013) Passive band-gap reconfiguration born from bifurcation asymmetry. Phys Rev E Stat Nonlinear Soft Matter Phys 88:052903CrossRefGoogle Scholar
  16. 16.
    Bernard BP, Mazzoleni MJ, Garraud N, Arnold DP, Mann BP (2014) Experimental investigation of bifurcation induced bandgap reconfiguration. J Appl Phys 116:084904CrossRefGoogle Scholar
  17. 17.
    Jensen JS (2003) Phononic band gaps and vibrations in one- and two-dimensional mass-spring structures. J Sound Vib 266:1053–1078CrossRefGoogle Scholar

Copyright information

© The Society for Experimental Mechanics, Inc. 2016

Authors and Affiliations

  • Michael J. Mazzoleni
    • 1
  • Brian P. Bernard
    • 2
  • Nicolas Garraud
    • 3
  • David P. Arnold
    • 3
  • Brian P. Mann
    • 1
  1. 1.Dynamical Systems Laboratory, Department of Mechanical Engineering and Materials ScienceDuke UniversityDurhamUSA
  2. 2.Autonomous Systems Laboratory, Department of MathematicsSchreiner UniversityKerrvilleUSA
  3. 3.Interdisciplinary Microsystems Group, Department of Electrical and Computer EngineeringUniversity of FloridaGainesvilleUSA

Personalised recommendations