Retrieving Points of Interest from Human Systematic Movements

  • Riccardo GuidottiEmail author
  • Anna Monreale
  • Salvatore Rinzivillo
  • Dino Pedreschi
  • Fosca Giannotti
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8938)


Human mobility analysis is emerging as a more and more fundamental task to deeply understand human behavior. In the last decade these kind of studies have become feasible thanks to the massive increase in availability of mobility data. A crucial point, for many mobility applications and analysis, is to extract interesting locations for people. In this paper, we propose a novel methodology to retrieve efficiently significant places of interest from movement data. Using car drivers’ systematic movements we mine everyday interesting locations, that is, places around which people life gravitates. The outcomes show the empirical evidence that these places capture nearly the whole mobility even though generated only from systematic movements abstractions.


Recommendation System Systematic Movement Mobility Data Shopping Center Human Mobility 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



This work has been partially supported by the European Commission under the FET-Open Project n. FP7-ICT-284715, ICON, and by the European Commission under the SMARTCITIES Project n. FP7-ICT-609042, PETRA.


  1. 1.
    Adrienko, N., Adrienko, G.: Spatial generalization and aggregation of massive movement data. IEEE Trans. Vis. Comput. Graph. 17(2), 205–219 (2011)CrossRefGoogle Scholar
  2. 2.
    Andrienko, G., Andrienko, N., Hurter, C., Rinzivillo, S., Wrobel, S.: From movement tracks through events to places: Extracting and characterizing significant places from mobility data. In: 2011 IEEE Conference on VAST. IEEE (2011)Google Scholar
  3. 3.
    Ankerst, M., Breunig, M.M., Kriegel, H.-P., Sander, J.: Optics: Ordering points to identify the clustering structure. In: ACM SIGMOD Record, vol. 28. ACM (1999)Google Scholar
  4. 4.
    Coscia, M., Rinzivillo, S., Giannotti, F., Pedreschi, D.: Optimal spatial resolution for the analysis of human mobility. In: 2012 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining (ASONAM). IEEE (2012)Google Scholar
  5. 5.
    Giannotti, F., Nanni, M., Pedreschi, D., Pinelli, F., Renso, C., Rinzivillo, S., Trasarti, R.: Unveiling the complexity of human mobility by querying and mining massive trajectory data. VLDB J. Int. J. Very Large Data Bases 20(5), 695–719 (2011)CrossRefGoogle Scholar
  6. 6.
    Giannotti, F., Nanni, M., Pinelli, F., Pedreschi, D.: Trajectory pattern mining. In: Proceedings of the 13th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM (2007)Google Scholar
  7. 7.
    Hillier, B., Penn, A., Hanson, J., Grajewski, T., Xu, J.: Natural movement-or, configuration and attraction in urban pedestrian movement. Environ. Plann. B 20(1), 29–66 (1993)CrossRefGoogle Scholar
  8. 8.
    Kim, M., Kotz, D., Kim, S.: Extracting a mobility model from real user traces. In: INFOCOM, vol. 6 (2006)Google Scholar
  9. 9.
    Kostakos, V., Juntunen, T., Goncalves, J., Hosio, S., Ojala, T.: Where am i? location archetype keyword extraction from urban mobility patterns. PloS one 8(5), e6398 (2013)CrossRefGoogle Scholar
  10. 10.
    Monreale, A., Pinelli, F., Trasarti, R., Giannotti, F.: Wherenext: a location predictor on trajectory pattern mining. In: Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM (2009)Google Scholar
  11. 11.
    Ramalho Brilhante, I., Berlingerio, M., Trasarti, R., Renso, C., de Macedo, J.A.F., Casanova, M.A.: Cometogether: discovering communities of places in mobility data. In: 2012 IEEE 13th International Conference on Mobile Data Management (MDM). IEEE (2012)Google Scholar
  12. 12.
    Ratti, C., Sobolevsky, S., Calabrese, F., Andris, C., Reades, J., Martino, M., Claxton, R., Strogatz, S.H.: Redrawing the map of great britain from a network of human interactions. PloS One 5(12), e14248 (2010)CrossRefGoogle Scholar
  13. 13.
    Trasarti, R., Pinelli, F., Nanni, M., Giannotti, F.: Mining mobility user profiles for car pooling. In: Proceedings of the 17th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM (2011)Google Scholar
  14. 14.
    Wang, D., Pedreschi, D., Song, C., Giannotti, F., Barabasi, A.-L.: Human mobility, social ties, and link prediction. In: Proceedings of the 17th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM (2011)Google Scholar
  15. 15.
    Zheng, Y., Li, Q., Chen, Y., Xie, X., Ma, W.-Y.: Understanding mobility based on gps data. In: Proceedings of the 10th International Conference on Ubiquitous Computing. ACM (2008)Google Scholar
  16. 16.
    Zheng, Y., Xie, X.: Learning location correlation from gps trajectories. In: 2010 Eleventh International Conference on Mobile Data Management (MDM). IEEE (2010)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Riccardo Guidotti
    • 1
    • 2
    Email author
  • Anna Monreale
    • 1
    • 2
  • Salvatore Rinzivillo
    • 2
  • Dino Pedreschi
    • 1
  • Fosca Giannotti
    • 2
  1. 1.KDDLabUniversity of PisaPisaItaly
  2. 2.KDDLabISTI-CNRPisaItaly

Personalised recommendations