CrowdMonitor: Monitoring Physical and Digital Activities of Citizens During Emergencies

  • Thomas LudwigEmail author
  • Tim Siebigteroth
  • Volkmar Pipek
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8852)


In recent times, emergencies such as the 2013 flood in mid Europe have clearly shown that besides the professional emergency services and authorities, citizens get a more and more active role in crisis response work. They organize themselves and coordinate private relief activities. Those activities can be found in (physical) groups of affected local citizens, but also within (digital) social media groups. To detect and use this civil potential by professional emergency services, approaches are needed that support the instructing of citizens and coordinating of their actions to avoid needless duplications or conflicts. In this paper we present a concept, based on a mobile crowd sensing approach, which was designed as well as implemented as the system prototype CrowdMonitor and facilitates the monitoring of physical and digital activities of and the assignment of specific tasks to citizens.


Crowdsourcing Emergency management Mobile crowd sensing Social media 


  1. 1.
    Reuter, C., Heger, O., Pipek, V.: Combining real and virtual volunteers through social media. In: Proc. ISCRAM 2013, pp. 780–790 (2013)Google Scholar
  2. 2.
    Kaufhold, M.-A., Reuter, C.: Vernetzte selbsthilfe in sozialen medien am beispiel des hochwassers 2013. In: Pipek, V., Reuter, C. (eds.) Hrsg. i-com - Zeitschrift für Interaktive und Kooperative Medien, vol 13, 13(1) Aufl. (2014)Google Scholar
  3. 3.
    Gao, H., Barbier, G.: Harnessing the Crowdsourcing Power of Social Media for Disaster Relief. Intell. Syst. IEEE. 26(3), 10–14 (2011)CrossRefGoogle Scholar
  4. 4.
    Estelles-Arolas, E., Gonzalez-Ladron-de-Guevara, F.: Towards an integrated crowdsourcing definition. Journal of Information Science 38(2), 189–200 (2012)CrossRefGoogle Scholar
  5. 5.
    Chu, E.T., Chen, Y., Lin, J., Liu, J.W.S.: Crowdsourcing support system for disaster surveillance and response. In: Proc. WPMC 2012, Taipei, pp. 21–25 (2012)Google Scholar
  6. 6.
    Chatfield, A.T., Brajawidagda, U.: Crowdsourcing hazardous weather reports from citizens via twittersphere under the short warning lead times of EF5 intensity tornado conditions. In: Proc. HICSS 2014, pp. 2231–2241 (2014)Google Scholar
  7. 7.
    Poblet, M., García-Cuesta, E., Casanovas, P.: IT enabled crowds: leveraging the geomobile revolution for disaster management. In: Poblet, M., Noriega, P., Plaza, E. (eds.) Hrsg. Proc. Sintelnet WG5 Workshop on Crowd Intelligence: Foundations, Methods and Practices, Barcelona, pp. 16–23 (2014)Google Scholar
  8. 8.
    Kanhere, S.S.: Participatory sensing: crowdsourcing data from mobile smartphones in urban spaces. In: Proc. MDM 2011, pp. 3–6. IEEE (2011)Google Scholar
  9. 9.
    Jiang, M., McGill, W.: Human-centered sensing for crisis response and management analysis campaigns. In: Proc. ISCRAM 2010, pp. 1–11 (2010)Google Scholar
  10. 10.
    Burke, J., Estrin, D., Hansen, M., et al.: Participatory Sensing, pp. 1–5 (2006)Google Scholar
  11. 11.
    Ludwig, T., Scholl, S.: Participatory sensing im rahmen empirischer forschung. In: Mensch and Computer 2014: Interaktiv unterwegs – Freiräume Gestalten. Oldenbourg-Verlag, München (2014)Google Scholar
  12. 12.
    Schulz, A., Paulheim, H., Probst, F.: Crisis Information Management in the Web 3.0 Age, pp. 2–6 (April 2012)Google Scholar
  13. 13.
    Zaslavsky, A., Jayaraman, P.P., Krishnaswamy, S.: ShareLikesCrowd: mobile analytics for participatory sensing and crowd-sourcing applications. In: Proc. ICDEW 2013, pp. 128–135 (2013)Google Scholar
  14. 14.
    Guo, B., Yu, Z., Zhou, X., Zhang, D.: From participatory sensing to mobile crowd sensing. In: Proc. of the Workshop on Social and Community Intelligence, Budapest (2014)Google Scholar
  15. 15.
    Sherchan, W., Jayaraman, P.P., Krishnaswamy, S., Zaslavsky, A., Loke, S., Sinha, A.: Using on-the-move mining for mobile crowdsensing. In: Proc. MDM 2012, pp. 115–124. IEEE (2012)Google Scholar
  16. 16.
    Rogstadius, J., Vukovic, M., Teixeira, C.A., Kostakos, V., Karapanos, E., Laredo, J.A.: CrisisTracker: Crowdsourced social media curation for disaster awareness. IBM Journal of Research and Development 57(5), 4:1–4:13Google Scholar
  17. 17.
    Heinzelmann, J., Waters, C.: Crowdsourcing Crisis Information in Disaster-Affected Haiti, Washington DC (2010)Google Scholar
  18. 18.
    Besaleva, L.I., Weaver, A.C.: CrowdHelp: A crowdsourcing application for improving disaster management. In: Global Humanitarian Technology Conference (GHTC), 2013 IEEE, pp. 185–190. IEEE, San Jose (2013)Google Scholar
  19. 19.
    Chohan, A.F., Hester, V., Munro, R.: Pakreport: Crowdsourcing for Multipurpose and Multicategory Climate related Disaster Reporting. (Cdi), pp. 1–9 (2010)Google Scholar
  20. 20.
    Frommberger, L., Schmid, F.: Mobile4D: crowdsourced disaster alerting and reporting. In: Proc. ICTD 2013, vol. 2, pp. 29–32 (2013)Google Scholar
  21. 21.
    Winterboer, A., Martens, M.A., Pavlin, G., Groen, F.C.A., Evers, V.: DIADEM: a system for collaborative environmental monitoring. In: Proc. CSCW 2011, pp. 589–590. ACM, New York (2011)Google Scholar
  22. 22.
    Asadi, S., Badica, C., Comes, T., et al.: ICT solutions supporting collaborative information acquisition, situation assessment and decision making in contemporary environmental management problems: the DIADEM approach. In: Pillmann, W., Schade, S., Smits, P. (eds.) Hrsg. Proc. EnviroInfo 2011, pp. 920–931. Shaker Verlag, Aachen (2011)Google Scholar
  23. 23.
    Meier, P.: MicroMappers: Microtasking for Disaster Response (2013). (accessed May 19, 2014)
  24. 24.
    Birregah, B., Top, T., Perez, C., et al.: Multi-layer crisis mapping: a social media-based approach. In: 2012 IEEE 21st International Workshop on Enabling Technologies: Infrastructure for Collaborative Enterprises (WETICE), pp. 379–384 (2012)Google Scholar
  25. 25.
    Reuter, C., Ritzkatis, M., Ludwig, T.: Entwicklung eines SOA-basierten und anpassbaren Bewertungsdienstes für Inhalte aus sozialen Medien. In: Informatik 2014 - Big Data - Komplexität meistern. Stuttgart: GI-Edition-Lecture Notes in Informatics (LNI), pp. 977–988 (2014)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Thomas Ludwig
    • 1
    Email author
  • Tim Siebigteroth
    • 1
  • Volkmar Pipek
    • 1
  1. 1.Institute for Information SystemsUniversity of SiegenSiegenGermany

Personalised recommendations