Advertisement

Colloidal Particles in Thin Liquid Films

  • Yan Zeng
  • Sebastian Schön
  • Adrian Carl
  • Regine von KlitzingEmail author
Chapter

Abstract

This chapter deals with the structuring of Silica nanoparticles in thin liquid films. In the first part of the chapter the particles are kept hydrophilic and their ordering under geometrical confinement in a thin liquid film is described. The thin film is formed between two solid surfaces in Colloidal Probe AFM. The effect of suspension parameters (particle concentration, particle size and salt concentration) and parameters of the outer surfaces (surface potential, roughness and elasticity) on the ordering are studied. In the second part of the chapter the same particles are hydrophobized with short chain amphiphiles. The partially hydrophobic nanoparticles are used to stabilize thin foam films in a Pickering foam. A multiscale approach from bulk solution via macroscopic foams, foam bubbles to the adsorption at the free water/air interface is presented in order to understand the stabilisation of Pickering foams.

Keywords

Colloidal particles Thin liquid films Structural forces Colloidal probe AFM Pickering foam 

Notes

Acknowledgments

The authors thank the DFG for financial support via the priority program “Kolloidverfahrenstechnik” SPP 1273 (Kl1165/1-3) and the CRG/TR 63 (Sfb) TP 6.

References

  1. 1.
    Basheva ES, Danov KD, Kralchevsky PA (1997) Experimental study of particle structuring in vertical stratifying films from latex suspensions. Langmuir 13(16):4342–4348Google Scholar
  2. 2.
    Biggs S, Burns JL, Yan YD, Jameson GJ, Jenkins P (2000) Molecular weight dependence of the depletion interaction between silica surfaces in solutions of sodium poly(styrene sulfonate). Langmuir 16(24):9242–9248Google Scholar
  3. 3.
    Binks BP (2002) Particles as surfactants—similarities and differences. Curr Opin Colloid Interface Sci 7(1–2):21–41Google Scholar
  4. 4.
    Burns JL, Yan YD, Jameson GJ, Biggs S (2000) Relationship between interaction forces and the structural compactness of depletion flocculated colloids. Colloids Surf A 162(1–3):265–277Google Scholar
  5. 5.
    Burns JL, Yan YD, Jameson GJ, Biggs S (2002) The effect of molecular weight of nonadsorbing polymer on the structure of depletion-induced flocs. J Colloid Interface Sci 247(1):24–32Google Scholar
  6. 6.
    Butt HJ (1991) Measuring electrostatic, vanderwaals, and hydration forces in electrolyte-solutions with an atomic force microscope. Biophys J 60(6):1438–1444Google Scholar
  7. 7.
    Decher G (1997) Fuzzy nanoassemblies: toward layered polymeric multicomposites. Science 277(5330):1232–1237Google Scholar
  8. 8.
    Denkov ND, Yoshimura H, Nagayama K, Kouyama T (1996) Nanoparticle arrays in freely suspended vitrified films. Phys Rev Lett 76(13):2354–2357Google Scholar
  9. 9.
    Drelich J, Long J, Xu Z, Masliyah J, Nalaskowski J, Beauchamp R, Liu Y (2006) AFM colloidal forces measured between microscopic probes and flat substrates in nanoparticle suspensions. J Colloid Interface Sci 301(2):511–522Google Scholar
  10. 10.
    Ducker WA, Senden TJ, Pashley RM (1991) Direct measurement of colloidal forces using an atomic force microscope. Nature 353(6341):239–241Google Scholar
  11. 11.
    Fainerman VB, Kovalchuk VI, Lucassen-Reynders EH, Grigoriev DO, Ferri JK, Leser ME, Michel M, Miller R, Mohwald H (2006) Surface-pressure isotherms of monolayers formed by microsize and nanosize particles. Langmuir 22:1701–1705Google Scholar
  12. 12.
    Gee ML, Israelachvili JN (1990) Interactions of surfactant monolayers across hydrocarbon liquids. J Chem Soc Faraday Trans 86:4049Google Scholar
  13. 13.
    Grandner S, Zeng Y, von Klitzing R, Klapp SHL (2009) Impact of surface charges on the solvation forces in confined colloidal solutions. J Chem Phys 131(15):154702Google Scholar
  14. 14.
    Groot RD, Stoyanov SD (2010) Equation of state of surface-adsorbing colloids. Soft Matter 6:1682–1692CrossRefGoogle Scholar
  15. 15.
    Horn RG, Israelachvili JN (1981) Direct measurement of structural forces between 2 surfaces in a non-polar liquid. J Chem Phys 75(3):1400–1411CrossRefGoogle Scholar
  16. 16.
    Israelachvili JN (1992) Intermolecular and surface forces. Academic Press, LondonGoogle Scholar
  17. 17.
    Israelachvili JN, Pashley RM (1983) Molecular layering of water at surfaces and origin of repulsive hydration forces. Nature 306(5940):249–250CrossRefGoogle Scholar
  18. 18.
    Klapp SHL, Zeng Y, Qu D, von Klitzing R (2008) Surviving structure in colloidal suspensions squeezed from 3d to 2d. Phys Rev Lett 100(11):118303Google Scholar
  19. 19.
    Kwok DY, Tadros B, Deol H, Vollhardt D, Miller R, Cabrerizo-Vilchez MA, Neumann AW (1996) Axisymmetric drop shape analysis as a film balance: rate dependence of the collapse pressure and molecular area at close packing of 1-octadecanol monolayers. Langmuir 12:1851–1859CrossRefGoogle Scholar
  20. 20.
    McNamee CE, Tsujii Y, Matsumoto M (2004) Interaction forces between two silica surfaces in an apolar solvent containing an anionic surfactant. Langmuir 20(5):1791–1798Google Scholar
  21. 21.
    McNamee CE, Tsujii Y, Ohshima H, Matsumoto M (2004) Interaction forces between two hard surfaces in particle-containing aqueous systems. Langmuir 20(5):1953–1962Google Scholar
  22. 22.
    Meakin P (1984) Diffusion-controlled aggregation on two-dimensional square lattices: Results from a new cluster-cluster aggregation model. Phys Rev B: Condens Matter 29:2930Google Scholar
  23. 23.
    Milling AJ (1996) Depletion and structuring of sodium poly(styrenesulfonate) at the silica-water interface. J Phys Chem 100(21):8986–8993Google Scholar
  24. 24.
    Milling AJ, Kendall K (2000) Depletion, adsorption, and structuring of sodium poly(acrylate) at the water-silica interface. I. An atomic force microscopy force study. Langmuir 16(11):5106–5115Google Scholar
  25. 25.
    Nikolov AD, Wasan DT (1989) Ordered micelle structuring in thin-films formed from anionic surfactant solutions. I. Experimental. J Colloid Interface Sci 133(1):1–12Google Scholar
  26. 26.
    Nikolov AD, Wasan DT (1992) Dispersion stability due to structural contributions to the particle interaction as probed by thin liquid-film dynamics. Langmuir 8(12):2985–2994Google Scholar
  27. 27.
    Piech M, Walz JY (2002) Direct measurement of depletion and structural forces in polydisperse, charged systems. J Colloid Interface Sci 253(1):117–129Google Scholar
  28. 28.
    Piech M, Walz JY (2004) The structuring of nonadsorbed nanoparticles and polyelectrolyte chains in the gap between a colloidal particle and plate. J Phys Chem B 108(26):9177–9188Google Scholar
  29. 29.
    Qu D, Baigl D, Williams CE, Mohwald H, Fery A (2003) Dependence of structural forces in polyelectrolyte solutions on charge density: a combined AFM/SAXS study. Macromolecules 36(18):6878–6883Google Scholar
  30. 30.
    Qu D, Pedersen JS, Garnier S, Laschewsky A, Moehwald H, Klitzing RV (2006) Effect of polymer charge and geometrical confinement on ion distribution and the structuring in semidilute polyelectrolyte solutions: comparison between AFM and SAXS. Macromolecules 39(21):7364–7371Google Scholar
  31. 31.
    Robinson JD, Earnshaw JC (1992) Experimental study of colloidal aggregation in two dimensions. I. Structural aspects. Phys Rev A 46:2045Google Scholar
  32. 32.
    Schoen S, von Klitzing R (2014) Simple extension of commonly used fitting equation for oscillating structural forces in case of silica nanoparticle suspensions (in preparation)Google Scholar
  33. 33.
    Sethumadhavan GN, Nikolov AD, Wasan DT (2001) Stability of liquid films containing monodisperse colloidal particles. J Colloid Interface Sci 240(1):105–112Google Scholar
  34. 34.
    Sharma A, Tan SN, Walz JY (1997) Effect of nonadsorbing polyelectrolytes on colloidal interactions in aqueous mixtures. J Colloid Interface Sci 191(1):236–246Google Scholar
  35. 35.
    Sharma A, Walz JY (1996) Direct measurement of the depletion interaction in a charged colloidal dispersion. J Chem Soc Faraday Trans 92(24):4997–5004Google Scholar
  36. 36.
    Tulpar A, Van Tassel PR, Walz JY (2006) Structuring of macroions confined between like-charged surfaces. Langmuir 22(6):2876–2883Google Scholar
  37. 37.
    Uzum C, Christau S, von Klitzing R (2011) Structuring of polyelectrolyte (NaPSS) solutions in bulk and under confinement as a function of concentration and molecular weight. Macromolecules 44:7782–7791CrossRefGoogle Scholar
  38. 38.
    Uzum C, Makuska R, von Klitzing R (2012) Effect of molecular architecture on the polyelectrolyte structuring under confinement. Macromolecules 45:3168–3176Google Scholar
  39. 39.
    von Klitzing R (2006) Internal structure of polyelectrolyte multilayer assemblies. Phys Chem Chem Phys 8(43):5012–5033CrossRefGoogle Scholar
  40. 40.
    Zeng Y, Grandner S, Oliveira CLP, Thunemann AF, Paris O, Pedersen JS, Klapp SHL, von Klitzing R (2011) Effect of particle size and debye length on order parameters of colloidal silica suspensions under confinement. Soft Matter 7:10899–10909CrossRefGoogle Scholar
  41. 41.
    Zeng Yan, von Klitzing Regine (2012) Oscillatory forces of nanoparticle suspensions confined between rough surfaces modified with polyelectrolytes via the layer-by-layer technique. Langmuir 28:6313–6321CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Yan Zeng
    • 1
  • Sebastian Schön
    • 1
  • Adrian Carl
    • 1
  • Regine von Klitzing
    • 1
    Email author
  1. 1.Stranski-LaboratoriumInstitut für ChemieBerlinGermany

Personalised recommendations